
Ned ROS documentation

This documentation contains everything you need to understand Ned’s functioning and how to control it through ROS.

It is made as well for users who are using the “physical” robot as for those who want to use a virtual version.

Preamble

Before diving into the software’s documentation, you can learn more about the robot development in the Overview (index.html#document-source/stack/overview)
section.

Then, you should check the Getting Started (index.html#document-source/installation/getting_started) section to setup your environment and try out the stack by
yourself. If you don’t have a real robot at your disposal, you can still simulate it via the Use Niryo robot through simulation (index.html#document-
source/simulation) section.

Ned Control via ROS

Ned is fully based on ROS.

ROS Direct control

 Important

To control the robot directly with ROS, you will need either to be connected in SSH to the physical robot, or to use the simulation.

ROS is the most direct way to control the robot. It allows you to:

Send commands via the terminal in order to call services, trigger actions, …
Write an entire Python/C++ node to realize a full process.

See ROS (index.html#document-source/stack/high_level) section to see all Topic & Services available.

Python ROS Wrapper

 Important

To use Python ROS Wrapper, you will need either to be connected in SSH to the physical robot, or to use the simulation.

The Python ROS Wrapper is built on top of ROS to allow a faster development than ROS. Programs are run directly on the robot which allows to trigger them with
the robot’s button once a computer is no longer needed.

See Python ROS Wrapper (index.html#document-source/ros_wrapper) to see which functions are accessible and examples on how to use them.

More ways

Other methods are available to control the robot allowing the user to code and run programs outside its terminal.

Learn more on this section (index.html#document-source/more).

ROS Stack overview

Ned is a robot based on Raspberry, Arduino & ROS. It uses ROS to make the interface between Hardware and high-level bindings.

On the following figure, you can see a global overview of Niryo’s robot software. It will help you understand where are placed each part of the software.

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ros_logo.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/niryo_ned_front.jpg
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/niryo_one_front.jpg
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/niryo_ned_front1.jpg
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/niryo_ned2_front.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/modbus_logo.jpg
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/modbus_logo1.jpg

Niryo robot v3 software

Use your Niryo Robot

Every Niryo Robot is usable as it is when ;rst switched on, with Niryo Studio for instance. However this robot can be used in many more ways if you want to go
deeper into its understanding.

In this tutorial, we will explain how the robot is setup and the different options you have to control it.

Connecting to the Robot

You can connect to your robot in multiple ways (Ethernet direct, Wi-Fi Hotspot, LAN).

You can find more information on how to connect to your robot here (https://docs.niryo.com/product/niryo-studio/source/connection.html).

Once your robot is accessible from your computer, you can access it through three ways:

Via Niryo Studio

Niryo Studio provides you with all the tools you need to control the robot. Please refer to the Niryo Studio documentation (https://docs.niryo.com/product/niryo-
studio/v3.2.1/en/index.html) for more information.

Via ROS Multimachine.

ROS implements a way to communicate between nodes launched on diBerent machines. By indicating your computer where the Niryo Robot ROS Master Node
is, you can communicate to any ROS Node as if you were directly connected on the robot. See the tutorial on the ROS wiki
(https://wiki.ros.org/ROS/Tutorials/MultipleMachines) for more information.

Via ssh (for advanced users only).

Port 22 is open without restriction. The default user is “niryo” and its password is “robotics”.

Robot setup

To help you understand how the OS is setup in the robot, we provide you with some insights of it.

 Attention

This document is not intended to explain how to completely install a robot from an empty SD card. It is only intended to give you clues on its architecture. Some
of the installation steps are refered in Ubuntu 18 Installation (index.html#ubuntu-18-installation) in case you would like to reinstall some part of it (catkin_ws for
example).

System setup

The robot is running on top of an Ubuntu server 18.04.5 for ARM customized to work on a Raspberry Pi 4B.

It comprises all the following elements :

ROS melodic and its requirements

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ros_stack_global_overview.png
https://docs.niryo.com/product/niryo-studio/source/connection.html
https://docs.niryo.com/product/niryo-studio/v3.2.1/en/index.html
https://wiki.ros.org/ROS/Tutorials/MultipleMachines

Sound driver
Led ring driver
Robot System services (connectivity, databases, flask server)
Basic development tools (compilation, editing tools)

We took care to update and upgrade the system before sending it to you

 Attention

We can’t ensure that the stability of the system will be kept if you try to update your system by yourself (using apt). We strongly advise you not to do so.

Home setup

The system has been configured with a default user “niryo”. The core of the robot program is installed in the home directory of niryo user /home/niryo.

In this directory, you have:

catkin_ws : contains the source code and the compiled binary for the Niryo ROS Stack
firmware_updater : updater for the steppers and the End Effector
niryo_robot_saved_files : set of files saved on the robot, used by Niryo Studio
system_software : configuration files for system wide functions

Services and daemons

Two services are used on the robot:

niryo_system_software : It launches the flask server for API communication with the robot
niryo_robot_ros : It launches the stack via /opt/start_ros.sh script at startup.

File /opt/start_ros.sh on the ned2 robot :

source ~/.bashrc
source /home/niryo/catkin_ws/install/release/ned2/setup.bash && roslaunch niryo_robot_bringup niryo_ned2_robot.launch&

If you want to start, stop or disable one of those services, please refer to the dedicated manual
(https://manpages.ubuntu.com/manpages/bionic/man8/service.8.html).

Starting the robot manually (for advanced users only)

Before continuing, be sure you know what you are doing.

You will need to have a ssh access setup to continue.

Stopping the service

First you will need to stop the Niryo ROS Stack that is automatically started when the robot boots up. Use the system linux command to do so:

sudo service niryo_robot_ros stop

Starting the robot

To start the robot, launch the following commands in a ssh terminal:

For Ned

source /home/niryo/catkin_ws/install/release/ned/setup.bash
roslaunch niryo_robot_bringup niryo_ned_robot.launch

For Ned2

source /home/niryo/catkin_ws/install/release/ned2/setup.bash
roslaunch niryo_robot_bringup niryo_ned2_robot.launch

Robot launch options

Name Default Value Description

log_level INFO Log level to display for ROS loggers

ttl_enabled true
Enable or disable the TTL bus usage.

This feature is used for debug mainly and can lead to an unstable stack.

can_enabled true
Enable or disable the CAN bus usage.

This feature is used for debug mainly and can lead to an unstable stack.

debug false Launch in debug mode. For development and debug only.

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://manpages.ubuntu.com/manpages/bionic/man8/service.8.html

timed true

To launch the node using timed_roslaunch.

If enabled, will first launch sound and light nodes to have a better user experience.

If disabled, the node is directly launched

Name Default Value Description

Changing the log level

Before launching the robot, you can change the con;guration ;le for the ROS Logger in order to change the log level displayed on the terminal. This ;le is located in
/home/niryo/catkin_ws/src/niryo_robot_bringup/config/niryo_robot_trace.conf.

It de;nes the logs levels for all cpp packages, based on log4cxx con;guration ;le syntax. Please see documentation of rosconsole (http://wiki.ros.org/rosconsole) or
log4cxx (https://logging.apache.org/log4cxx/latest_stable/index.html) for more information.

By default, the level is set to INFO, you can change this value if you want more logs.

Set the default ros output to warning and higher
log4j.logger.ros=INFO

 Attention

DEBUG level is very verbose, you can deteriorate the performances of your robot by doing so.

You can also choose to change only the log level of a speci;c cpp package by uncommenting one of the following lines and optionally change the associated log
level.

#log4j.logger.ros.can_driver = DEBUG
log4j.logger.ros.common = DEBUG
log4j.logger.ros.conveyor_interface = ERROR

Use Niryo robot through simulation

The simulation allows to control a virtual Ned directly from your computer.

Ned in Gazebo Simulation

In this tutorial, you will learn how to setup a robot simulation on a computer.

 Note

You can use Niryo Studio with the simulation (https://docs.niryo.com/product/niryo-studio/source/connection.html#using-ned-in-simulation-with-niryo-studio/).
To do so, you just have to connect Niryo Studio to “Localhost”.

Simulation environment installation

 Attention

The whole ROS Stack is developed and tested on ROS Melodic which requires Ubuntu 18.04 to run correctly. The using of another ROS version or OS may lead
to malfunctions of some packages. Please follow the steps in Ubuntu 18 Installation (index.html#ubuntu-18-installation) to install a working environment.

Simulation usage

 Important

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://wiki.ros.org/rosconsole
https://logging.apache.org/log4cxx/latest_stable/index.html
https://docs.niryo.com/product/niryo-studio/source/connection.html#using-ned-in-simulation-with-niryo-studio/

 Important

Hardware features are simulated as if you were using a real robot.
The data returned by the faked drivers is arbitrary and immutable. Among this data, you will have : voltage, temperature, error state (always 0), ping (always
true), end effector state (immutable)

The simulation is a powerful tool allowing to test new programs directly on your computer which prevents to transfer new code on the robot.
It also helps for developing purpose → no need to transfer code, compile and restart the robot which is way slower than doing it on a desktop computer.

Without physics - No visualization

This mode is mainly for simulation and tests purpose, bringing you in the closest state as possible to a real robot control. It is available for all currently supported
architectures. You can access it by using the commands:

One simulation:

roslaunch niryo_robot_bringup niryo_one_simulation.launch

Ned simulation:

roslaunch niryo_robot_bringup niryo_ned_simulation.launch

Ned2 simulation:

roslaunch niryo_robot_bringup niryo_ned2_simulation.launch

This mode is useful if your CPU capacity is limited or if you don’t have X server available.

Options

This mode is the more Jexible one, as it provides all the possible options to customize the simulation. For the other simulation modes (with RViz and Gazebo) we
will just force some of these parameters to specific values.

Simulation without visualization Options

Name Default Value Description

log_level INFO Log level to display for ROS loggers

ttl_enabled true Enable or disable the TTL bus usage. This feature is used for debug mainly and can lead to an unstable stack.

can_enabled true Enable or disable the CAN bus usage. This feature is used for debug mainly and can lead to an unstable stack.

debug false Launch in debug mode. For development and debug only.

conf_location version.txt Location of the version.txt file. A path to the file is required.

simu_gripper true Simulate the presence of a gripper id 11 on the bus

simu_conveyor true Simulate the presence of a conveyor (CAN for One and Ned, TTL for Ned2, based on configuration files) on the bus

vision_enabled true Enable the Vision Kit

gazebo false Enable gazebo specific parameters (However it does not launch gazebo, use gazebo specific launch file for that)

Without physics - RViz Visualization

A simple visualization of the robot is possible via a tool called Rviz. This application will simulate the robot with its correct geometry and positions but without
physics to avoid using too much CPU.

Control with trackbar

This visualization allows an easy first control of the robot, and helps to understand joints disposal. You can access it by using the command:

roslaunch niryo_robot_description display.launch

Rviz should open with a window containing 6 trackbars. Each of these trackbars allows to control the corresponding joint.

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Example of trackbars use.

Control with ROS

Not only Rviz can display the robot, but it can also be linked with ROS controllers to show the robot’s actions from ROS commands!
This method can help you debug ROS topics, services and also, API scripts.

To run it:

roslaunch niryo_robot_bringup desktop_rviz_simulation.launch

Rviz opening, with the robot ready to be controlled with ROS!

RViz Visualization options

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://wiki.ros.org/rviz

Table of RViz launch Options

Name Default Value Description

log_level INFO Log level to display for ROS loggers

hardware_version ned Use the parameters dedicated to this specific hardware_version. Possible values are “one”, “ned” and “ned2”

debug false Launch in debug mode. For development and debug only.

gui true Enable the gui visualization

conf_location version.txt Location of the version.txt file. A path to the file is required.

simu_gripper false Simulate the presence of a gripper id 11 on the bus (Visualisation of the tool will not be visible, whatever the value of this parameter)

simu_conveyor false Simulate the presence of a conveyor (Visualisation of the conveyor will not be visible, whatever the value of this parameter)

With physics - Gazebo Simulation

For the simulation, Ned uses Gazebo, a well known tool among the ROS community. It allows:

Collision.
World creation → A virtual environment in which the robot can deal with objects.
Gripper & Camera using.

The Niryo Gripper 1 has been replicated in Gazebo. The Camera is also implemented.

 Note

Gazebo also generates camera distortion, which brings the simulation even closer from the reality!

Launch Gazebo simulation

A specific world has been created to use Ned in Gazebo with 2 workspaces.

To run it:

roslaunch niryo_robot_bringup desktop_gazebo_simulation.launch

Gazebo view, with the robot ready to be controlled with ROS!

 Note

You can edit Gazebo world to do your own! It’s placed in the folder worlds of the package niryo_robot_gazebo.

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Gazebo Simulation options

The user can disable 3 things by adding the specific string to the command line:

the Gazebo graphical interface: gui:=false.
the Camera & the Gripper - Vision & Gripper wise functions won’t be usable: gripper_n_camera:=false.

 Hint

Gazebo can be very slow. If your tests do not need Gripper and Camera, consider using Rviz to alleviate your CPU.

Table of Gazebo launch Options

Name Default Value Description

log_level INFO Log level to display for ROS loggers

hardware_version ned Use the parameters dedicated to this specific hardware_version. Possible values are “one”, “ned” and “ned2”

debug false Launch in debug mode. For development and debug only.

gui true Enable the gui visualization

conf_location version.txt Location of the version.txt file. A path to the file is required.

gripper_n_camera true Simulate the presence of a gripper id 11 and a camera on the bus

simu_conveyor true Simulate the presence of a conveyor (Visualisation of the conveyor will not be visible, whatever the value of this parameter)

Quick start

Welcome to the robot quick start. Here you will learn the essential features of the robot to get you started.

Robot connection

There are 4 ways to connect your computer to the robot:

Hotspot

Type: Wi-Fi
Difficulty: Easy
Description: The robot provides its own Wi-Fi network. In this mode, you can connect to the robot like any other Wi-Fi network.
The network name is in the format of NiryoRobot xx-xx-xx and the default password is niryorobot. To change the name of the robot, refer to the section:
Robot Name .
More informations: Wi-Fi settings, Using Ned in Hotspot mode .
Advantage: Easy, no cable required.
Disadvantage: Ethernet connection needed on the computer to have access to the internet. The robot has no access to the internet and cannot update itself.
IP address: 10.10.10.10

Connected mode

Type: Wi-Fi
Difficulty: Medium
Description: The robot is connected to an existing Wi-Fi network.
More informations: Wi-Fi settings, Using Ned on your Wi-Fi network .
Advantage: Ethernet connection needed on the computer to have access to the internet. The robot has no access to the internet and cannot update itself.
Disadvantage: Stable Wi-Fi connection required.
IP address: Dependant of your network.

Ethernet direct

Type: Ethernet
Difficulty: Medium
Description: The robot is connected directly to the computer via an ethernet cable.
More informations: Ethernet settings, Using Ned with an Ethernet cable .
Advantage: The computer can have access to the internet through Wi-Fi. Safer and better communication with the robot.
Disadvantage: Cable required. The robot has no access to the internet and cannot update itself.
IP address: 169.254.200.200

Ethernet through network

Type: Ethernet
Difficulty: Medium
Description: The robot is connected to the network via an ethernet cable, and the computer is connected to the network via an ethernet cable or via Wi-Fi.
More informations: Ethernet settings .
Advantage: The robot and the computer can have access to the internet. Better communication with the robot.
Disadvantage: Cable required.
IP address: Dependant of your network.

Robot programming

There are 6 ways to program Niryo’s robots:

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.niryo.com/product/niryo-studio/source/settings.html#robot-name
https://docs.niryo.com/product/niryo-studio/source/settings.html#ned-wi-fi-setting
https://docs.niryo.com/product/niryo-studio/source/connection.html#using-ned-in-hotspot-mode
https://docs.niryo.com/product/niryo-studio/source/settings.html#ned-wi-fi-setting
https://docs.niryo.com/product/niryo-studio/source/connection.html#using-ned-on-your-wi-fi-network
https://docs.niryo.com/product/niryo-studio/source/settings.html#network-settings
https://docs.niryo.com/product/niryo-studio/source/connection.html#using-ned-with-an-ethernet-cable
https://docs.niryo.com/product/niryo-studio/source/settings.html#network-settings

Ways to program the Niryo robots

Name Language Difficulty Documentation Description

Niryo Studio
Blockly Beginner Blockly

Simplified block programming.

Program your use cases as quickly as possible.

PyNiryo Python Intermediate Pyniryo Program your robot remotely via a Python API 2.7 and 3.X .

Python ROS wrapper
Python Intermediate Python ROS wrapper

Program and run your Python code directly in the robot.

No software or setup required except Niryo Studio or an ssh terminal.

ROS
Python, C++ Advanced Niryo Ros

Program and run your ROS node directly on the robot,

or remotely through ROS Multimachine.

MODBUS
Any Advanced MODBUS

Programs can communicate through network MODBUS

with the robots in any language available.

TCP Server
Any Advanced TCP Server

Programs can communicate through network TCP

with the robots in any language available.

Niryo One and Ned tips

Program your first move in 30 seconds

The fastest way to program the robot is via Blockly (https://docs.niryo.com/product/niryo-studio/source/blockly_api.html). When you are on the Blockly page and
logged into the robot, switch to learning mode via the toggle. You can then press the button on top of the robot’s base once to bring up a block with the robot’s
current position. Thus, move your robot by hand, press the button and connect the blocks. Congratulations you have programmed a robot at lightning speed!

At the top right of the Blockly window, you can choose to save the positions in either Joints or Pose mode.

Joints & Poses, what’s the difference?

The joints are the diBerent joints of the robot. In joint mode, you give the robot a command on each of the robot motors. The default unit used is the radian.
6.28318530718 radian is 2π and corresponds to 360°. On Niryo Studio you can switch to degrees for more simplicity.

The Pose corresponds to the x, y, z coordinates and the roll, pitch, yaw orientation (respecting the rotation around the x, y, z axes) of the extremity of the robot. The
x-axis is directed to the front of the robot, and the y-axis to the left of the robot. A positive x-coordinate will move the robot forward. A positive y-coordinate will
move the robot to the left, and negative y will move the robot to the right.

Sometimes there can be several axis con;gurations of the robot that correspond to the same coordinates. This is why it is recommended to use the Joints
commands instead. The Pose is however easier and more intuitive to use to ask the robot to go for example 10cm higher, or 10 to the right.

Use a tool

To use a tool, remember to use the scan function to detect the connected tool. You can then use the grippers, the Vacuum Pump or the Electromagnet as you wish.

Remember to add the scan function at the beginning of each of your programs to avoid any surprises.

Our diBerent tools are intelligent, so the robot will be able to adapt its movements according to the selected tool for a pick and place with vision. Also, you can
program your movements with Pose. By activating the TCP (Tool Center Point) (https://docs.niryo.com/product/niryo-studio/source/settings.html#robot-tcp-tool-
center-point) function, the TCP of the robot, and therefore the movements, will adapt to the tool equipped.

Standard, linear, waypointed moves, what’s the difference?

There are many different types of movement possible for robot arms. The 3 most used are the following:

Standard movements: Also called PTP (Point To Point). This is the simplest movement. In this type of movement, the duration of the movement is minimized,
each joint reaches the final position at the same time. The robot draws a kind of arc of a circle according to the initial and final positions.
Linear movements: The robot draws a straight line between the start and end position However, a linear movement is not always possible between two points
depending on the constraints of the robot. Make sure that the movement is feasible. If not, the robot will return an error.
Smoothed movements by waypoints: This is where we ask the robot to make a movement to an end point by passing through intermediate points. The robot
draws linear paths, or PTP if linear motion is not possible, between each waypoint without stopping. It is also possible to record blend radius to smooth the
movement and to draw curves between the points. This path is ideal for dodging obstacles.

Waypointed trajectory with blend radius (https://ros-planning.github.io/moveit_tutorials/doc/pilz_industrial_motion_planner/pilz_industrial_motion_planner.html#user-
interface-sequence-capability)

Start, Pause, Cancel a program execution

You may not know it, but the button on the top of the base of the robot also allows you to start, pause and stop a program.

When a program is running:

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.niryo.com/product/niryo-studio/source/blockly_api.html
https://docs.niryo.com/dev/pyniryo/index.html
https://docs.niryo.com/dev/ros/source/ros_wrapper.html
https://docs.niryo.com/dev/ros/source/stack/overview.html
https://docs.niryo.com/dev/ros/source/modbus.html
https://docs.niryo.com/dev/ros/source/tcp_server.html
https://docs.niryo.com/product/niryo-studio/source/blockly_api.html
https://docs.niryo.com/product/niryo-studio/source/settings.html#robot-tcp-tool-center-point
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/waypointed_trajectory.png
https://ros-planning.github.io/moveit_tutorials/doc/pilz_industrial_motion_planner/pilz_industrial_motion_planner.html#user-interface-sequence-capability

1 press pauses the program
2 presses will pause the programme and activate the learning mode

When a program is paused:

1 press resumes the program
2 presses stop the program
If there is no intervention for 30 seconds, the programme stops automatically

When the program is paused, the LED at the back flashes white.

When no program is running you can also start a program by pressing the same button once. To set it up, go to the Program Autorun
(https://docs.niryo.com/product/niryo-studio/source/programs.html#program-autorun).

Getting Started

The Niryo ROS Stack can be installed in multiple target OS:

Raspberry Pi 3 (deprecated, not supported anymore)
Raspberry Pi 4
Desktop

As the stack is based on ROS Melodic or Kinetic (deprecated), you need to be on an Ubuntu based system.

We currently support the following versions:

Ubuntu 18.04 Ubuntu 18 Installation
Windows Subsystem for Linux 2 (WSL 2) - Ubuntu 18.04 Windows Subsystem for Linux installation (experimental)

Ubuntu 18 Installation

This guide will explain the steps needed to install the Niryo Robot Stack on an Ubuntu 18 OS. You can apply these steps to set up a working simulation environment
on any development computer, or to set up a working robot stack on a Raspberry Pi.

Installation index:

Prerequisites
Install ROS dependencies
Setup Ned ROS environment

Prerequisites

The Niryo ROS Stack runs on top of ROS Melodic or Kinetic (deprecated). This version of ROS is strongly dependent of Ubuntu 18.04 version, thus, this OS is currently
the only official supported OS.

Be sure to have an up to date system before continuing

sudo apt-get update
sudo apt-get upgrade
sudo apt-get dist-upgrade

Ubuntu packages

The Niryo ROS Stack needs the following packages in order to run correctly:

build-essential
sqlite3
ffmpeg

 Note

These packages are mostly useful on a real robot, but as the code is identical between simulation and real functioning, a lack of these packages on a simulation
can lead to unstabilities.

Python environment

The Python environment is installed using the requirements_ned2.txt file

pip2 install -r src/requirements_ned2.txt

 Note

ROS Melodic is still using Python2 internally so are our Python scripts to keep version alignment. You thus need to install the requirements using Python2 pip2
tool

ROS set up

 Note

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.niryo.com/product/niryo-studio/source/programs.html#program-autorun

All terminal command listed are for Ubuntu users.

Place yourself in the folder of your choice and create a folder catkin_ws_niryo_ned as well as a sub-folder src:

mkdir -p catkin_ws_niryo_ned/src

Then go to the folder catkin_ws_niryo_ned and clone Ned repository in the folder src. For the future operations, be sure to stay in the catkin_ws_niryo_ned folder:

cd catkin_ws_niryo_ned
git clone https://github.com/NiryoRobotics/ned_ros src

Install ROS dependencies

Install ROS

You need to install ROS Melodic. To do so, follow the ROS official tutorial here (http://wiki.ros.org/melodic/Installation/Ubuntu) and chose the Desktop-Full Install.

Install additional packages

To ensure the functioning of all Ned’s packages, you need to install several more packages:

Method 1: Quick installation via ROSDep

For each package, we have referenced all the dependencies in their respective package.xml file, which allows to install each dependency via rosdep command:

rosdep update
rosdep install --from-paths src --ignore-src --default-yes --rosdistro melodic --skip-keys "python-rpi.gpio"

Method 2: Full installation

ROS packages needed are:

catkin
python-catkin-pkg
python-pymodbus
python-rosdistro
python-rospkg
python-rosdep-modules
python-rosinstall python-rosinstall-generator
python-wstool

To install a package on Ubuntu:

sudo apt install <package_name>

Melodic specific packages needed are:

moveit
control
controllers
tf2-web-republisher
rosbridge-server
joint-state-publisher-gui

To install a ROS Melodic’s package on Ubuntu:

sudo apt install ros-melodic-<package_name>

Setup Ned ROS environment

 Note

Be sure to be still placed in the catkin_ws_niryo_ned folder.

Then perform the make of Ned’s ROS Stack via the command:

catkin_make

If no errors occurred during the make phase, the setup of your environment is almost complete!

It is necessary to source the configuration file to add all Ned packages to ROS environment. To do so, run the command:

source devel/setup.bash

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://wiki.ros.org/melodic/Installation/Ubuntu

It is necessary to run this command each time you launch a new terminal. If you want to make this sourcing appends for all your future terminals, you can add it to
your bashrc file:

echo "source $(pwd)/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc

Installation is now finished!

Windows Subsystem for Linux installation (experimental)

Microsoft is developping since 2016 a compatibility layer for running Linux binary executables natively on Windows 10. With the version 2 issued in 2019, this
“hidden Linux kernel” is now mature enough to run complex operations like the full ROS stack .

Thus you will be able to run simulations for the Ned, Niryo One or Ned2 robots on a Windows machine.

 Note

You have to be running Windows 10 version 2004 (Build 19041) or higher for WSL2 to work.

 Warning

The installation under WSL is not originally supported by Niryo, this guide is provided on an indicative basis only.

The following guide is mainly adapted from this blog post from Jack Kawell, feel free to refer to it for more complete information

Install WSL2

1. Enable Windows Subsystem for Linux on your machine (in a powershell terminal)

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart

2. Update WSL to use version 2 (in a powershell terminal)

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart

3. You then need to restart your machine to finish the WSL installation and the upgrade to WSL2.
4. Set default version of WSL to 2 (in a powershell terminal)

wsl --set-default-version 2

5. Install an Ubuntu 18.04 distribution using the Windows Store

Ubuntu 18.04 in the Windows Store

6. Launch the app. The first time, it asks you to finish the initialization of the OS.

Your Ubuntu OS is now ready. You can continue the build of the stack using the tutorial.

Setting up GUI forwarding

WSL does not come with an X server. Thus, you will not be able to launch any graphical windows for now. But we can change this by using a Windows X server and
forward the GUI to it using GUI forwarding.

Many X servers exist for Windows 10. We tested VcXsrc, and it correctly does the job. https://sourceforge.net/projects/vcxsrv/
(https://sourceforge.net/projects/vcxsrv/)

1. Launch VcXsrv. Be sure to have the following options : - Uncheck “Native OpenGL” - Check “Disable access control”

[2]

[1]

[3]

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/windows_store.png
https://sourceforge.net/projects/vcxsrv/

 Note

You can directly use this configuration by using this  configuration file (_downloads/818503a538e687731e85c64365865076/wsl_config.xlaunch)

2. You need to export the address of your Xserver in Ubuntu 18 to forward the GUI

export DISPLAY=$(cat /etc/resolv.conf | grep nameserver | awk '{print $2}'):0

You can add this to your bashrc file.

3. You can check that your forwarding works by using simple X11 apps for example:

sudo apt update
sudo apt install x11-apps
xcalc

4. Install ROS Melodic (see instructions here)
5. Try launching Rviz

roscore & rosrun rviz rviz

6. You should now be able to launch any simulation of the One, Ned or Ned2 using Rviz or Gazebo

Troubleshooting

Error: Can’t open display: 192.168.1.44:0.0 Your DISPLAY variable does not match the address of your XServer.

Try :

Check that you correctly launched your XServer with the required options (Disable access control is essential)
Check that the IP you gave is correct (you need the address in /etc/resolv.conf to have it work)

OpenGL issues Some people have said that they run into issues with OpenGL applications like Rviz. If you do, try setting the environment variable
LIBGL_ALWAYS_INDIRECT=0 in your WSL2 terminal (you can just add export LIBGL_ALWAYS_INDIRECT=0 to the end of your .bashrc file).

[1] https://jack-kawell.com/2020/06/12/ros-wsl2/

[2] https://docs.microsoft.com/en-us/windows/wsl/compare-versions

[3] https://docs.microsoft.com/en-us/windows/wsl/install-win10

Overview

Ned is a robot based on Raspberry, Arduino & ROS. It uses ROS to make the interface between Hardware and high-level bindings.

On the following figure, you can see a global overview of the Niryo’s robot software in order to understand where are placed each part of the software.

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/vcxsrv_1.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/vcxsrv_2.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/vcxsrv_3.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_downloads/818503a538e687731e85c64365865076/wsl_config.xlaunch
https://jack-kawell.com/2020/06/12/ros-wsl2/
https://docs.microsoft.com/en-us/windows/wsl/compare-versions
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Niryo robot v3 software

ROS Logo

ROS (Robot Operating System) is an Open-Source Robotic Framework which allows to ease robot software development. The framework is used in almost each part
of Ned’s software.

The Stack is split into two parts:

The High Level Packages (motion planner, vision, …), developed in Python to give good readability
The Low Level Packages (drivers, hardware management, …), developed in C++ to ensure real time capabilities.

 Note

To learn more about ROS, go on Official ROS Wiki (http://wiki.ros.org/).

High Level Packages

In this section, you will have access to all information about each Niryo Robot’s ROS packages developed for High Level interfaces.

Niryo_robot_bringup

This packages provides config and launch files to start Ned and ROS packages with various parameters.

Launch files are placed in the launch folder. Only files with .launch extension can be executed.

Bring Up Launch Files’ organization

On RaspberryPI

One

The file niryo_one_robot.launch allows to launch ROS on a Raspberry Pi 3.
This file is automatically launched when Niryo One boots (Niryo One RPi3B image).

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ros_logo1.png
http://wiki.ros.org/
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/bringup_organization.png

Command to launch Niryo One’s ROS Stack:

roslaunch niryo_robot_bringup niryo_none_robot.launch

Ned

The file niryo_ned_robot.launch allows to launch ROS on a Raspberry Pi 4.
This file is automatically launched when Ned boots (Ned RPi4B image).

Command to launch Ned’s ROS Stack:

roslaunch niryo_robot_bringup niryo_ned_robot.launch

Ned2

The file niryo_ned2_robot.launch allows to launch ROS on a Raspberry Pi 4.
This file is automatically launched when Ned2 boots (Ned2 RPi4B image).

Command to launch Ned2’s ROS Stack:

roslaunch niryo_robot_bringup niryo_ned2_robot.launch

On Desktop (Simulation)

As the simulation happens on a computer, the hardware-related stuff is not used.

For both of following launch files, you can set:

gui to “false” in order to disable graphical interface.

Gazebo simulation

Run Gazebo simulation. The robot can do everything that is not hardware-related:

move, get_pose.
use the camera (to disable it, set “camera” parameter to ‘false’).
use the Gripper 1 (to disable it, set “simu_gripper” parameter to ‘false’).
save/run programs, go to saved pose, …

Command to launch the simulation:

roslaunch niryo_robot_bringup desktop_gazebo_simulation.launch

To disable camera & gripper:

roslaunch niryo_robot_bringup desktop_gazebo_simulation.launch gripper_n_camera:=false

To run it with a specific hardware version, use the command:

roslaunch niryo_robot_bringup desktop_gazebo_simulation.launch hardware_version:=ned # one, ned2

Rviz simulation

Run Rviz simulation. You can access same features as Gazebo except Camera & Gripper.

To run it, use the command:

roslaunch niryo_robot_bringup desktop_rviz_simulation.launch

To run it with a specific hardware version, use the command:

roslaunch niryo_robot_bringup desktop_rviz_simulation.launch hardware_version:=ned # one, ned2

Notes - Ned Bringup

niryo_robot_base files setup many rosparams, these files should be launched before any other package.

The following files are used to configure the robot logs:

desktop_gazebo_simulation_trace.conf
desktop_rviz_simulation_trace.conf
niryo_robot_trace.conf

Niryo_robot_arm_commander

This package is the one dealing with all commander related stuff.

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

It is composed of only one node, which runs separately the arm commander and the tool commander.

Commander node

The ROS Node is made to interact with:

The arm through MoveIt!
The tools through the tool controller.

All commands are firstly received on the actionlib server which:

Handles concurrent requests.
Checks if the command can’t be processed due to other factors (ex: learning mode).
Validates parameters.
Calls required controllers and returns appropriate status and message.

It belongs to the ROS namespace: /niryo_robot_arm_commander/ .

Parameters - Commander

Commander’s Parameters

Name Description

reference_frame
Reference frame used by MoveIt! for moveP.

Default : ‘world’

move_group_commander_name Name of the group that MoveIt is controlling. By default: “arm”

jog_timer_rate_sec Publish rate for jog controller

simu_gripper If you are using the simulated Gripper and want to control the Gripper

Action Server - Commander

Commander Package Action Servers

Name Message Type Description

robot_action RobotMove Command the arm and tools through an action server

Services - Commander

Commander Package Services

Name Message Type Description

is_active GetBool Indicate whereas a command is actually running or not

stop_command Trigger Stop the actual command

set_max_velocity_scaling_factor SetInt Set a percentage of maximum speed

/niryo_robot/kinematics/forward GetFK Compute a Forward Kinematic

/niryo_robot/kinematics/inverse GetIK Compute a Inverse Kinematic

Messages - Commander

Commander Package Messages

Name Description

ArmMoveCommand Message to command the arm

ShiftPose Message for shifting pose

PausePlanExecution Pause movement execution

All these services are available as soon as the node is started.

Dependencies - Commander

actionlib
actionlib_msgs
control_msgs
geometry_msgs
MoveIt!
moveit_msgs
Niryo_robot_msgs
Niryo robot tools commander
python-numpy
ros_controllers
rosbridge_server
sensor_msgs

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://wiki.ros.org/actionlib
http://docs.ros.org/melodic/api/actionlib_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/control_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/geometry_msgs/html/index-msg.html
https://moveit.ros.org/
http://docs.ros.org/melodic/api/moveit_msgs/html/index-msg.html
https://numpy.org/
http://wiki.ros.org/ros_controllers
http://wiki.ros.org/rosbridge_server
http://docs.ros.org/melodic/api/sensor_msgs/html/index-msg.html

std_msgs
tf2_web_republisher
trajectory_msgs

Action files - Commander

RobotMove

goal
niryo_robot_arm_commander/ArmMoveCommand cmd

result
int32 status
string message

feedback
niryo_robot_msgs/RobotState state

Services files - Commander

GetFK

float32[] joints

niryo_robot_msgs/RobotState pose

GetIK

niryo_robot_msgs/RobotState pose

bool success
float32[] joints

JogShift

int32 JOINTS_SHIFT = 1
int32 POSE_SHIFT = 2

int32 cmd

float32[] shift_values

int32 status
string message

Messages files - Commander

ArmMoveCommand

int32 JOINTS = 0 # uses joints
int32 POSE = 1 # uses position and rpy
int32 POSITION = 2 # uses position
int32 RPY = 3 # uses rpy
int32 POSE_QUAT = 4 # uses position and orientation
int32 LINEAR_POSE = 5 # uses position and rpy
int32 SHIFT_POSE = 6 # uses shift
int32 SHIFT_LINEAR_POSE = 7 # uses shift
int32 EXECUTE_TRAJ = 8 # uses dist_smoothing, list_poses
int32 DRAW_SPIRAL = 9
int32 DRAW_CIRCLE = 10
int32 EXECUTE_FULL_TRAJ = 11
int32 EXECUTE_RAW_TRAJ = 12

int32 cmd_type

float64[] joints
geometry_msgs/Point position
niryo_robot_msgs/RPY rpy
geometry_msgs/Quaternion orientation
niryo_robot_arm_commander/ShiftPose shift

geometry_msgs/Pose[] list_poses
float32 dist_smoothing

trajectory_msgs/JointTrajectory trajectory

float64[] args

PausePlanExecution

int8 STANDBY = 0
int8 PLAY = 1
int8 PAUSE = 2
int8 RESUME = 3
int8 CANCEL = 4

float64 PAUSE_TIMEOUT = 30.0

int8 state

ShiftPose

int32 axis_number
float64 value

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html
http://wiki.ros.org/tf2_web_republisher
http://docs.ros.org/melodic/api/trajectory_msgs/html/index-msg.html

Niryo_robot_description

This package contains URDF files and meshes (collada + stl) for Ned.

To display Ned on Rviz:

roslaunch niryo_robot_description display.launch

To display other Niryo robots on Rviz:

roslaunch niryo_robot_description display.launch hardware_version:=ned2 # one, ned

Note : 3D visualization is not available on Ned Raspberry Pi4 image. To use the following commands, you must have setup Ned ROS Stack on your computer.

Niryo_robot_gazebo

Gazebo

Usage

This package contains models, materials & Gazebo worlds.

When launching the Gazebo version of the ROS Stack, the file niryo_robot_gazebo_world.launch.xml will be called to generate the Gazebo world.

Create your own world

Create your world’s ;le and put it on the folder worlds. Once it is done, you have to change the parameter world_name in the ;le
niryo_robot_gazebo_world.launch.xml.

You can take a look at the Gazebo world by launching it without robot by precising the world name in the arg world_name:

roslaunch niryo_robot_gazebo niryo_gazebo_world.launch world_name:=niryo_cube_world hardware_version:=ned # one, ned2

Niryo_robot_msgs

This package contains standard messages which can be used by all other packages.

Niryo messages

Ned Messages

Name Description

BusState TTL bus state

CommandStatus Enum-wise message for status code

ObjectPose x, y, z, roll, pitch, yaw

RobotState position, rpy, quaternion

RPY roll, pitch, yaw

HardwareStatus several hardware information

SoftwareVersion several software version

Niryo services

Ned Services

Name Description

GetBool Return a bool

GetInt Return a integer

GetNameDescriptionList Return a name list and a description list

GetString Return a string

GetStringList Return a list of string

Ping Used to ping APIs

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/gazebo_logo.png

SetBool Set a bool and return status

SetFloat Set a float and return status

SetInt Set a integer and return status

SetString Set a string and return status

Trigger Trigger a task

Name Description

Niryo message dependencies

geometry_msgs

Niryo message files

BusState

std_msgs/Header header
bool connection_status
uint8[] motor_id_connected
string error

CommandStatus

int32 val

overall behavior
int32 SUCCESS = 1
int32 CANCELLED = 2
int32 PREEMPTED = 3

int32 FAILURE = -1
int32 ABORTED = -3
int32 STOPPED = -4

int32 BAD_HARDWARE_VERSION = -10
int32 ROS_ERROR = -20

int32 FILE_ALREADY_EXISTS = -30
int32 FILE_NOT_FOUND = -31

int32 UNKNOWN_COMMAND = -50
int32 NOT_IMPLEMENTED_COMMAND = -51
int32 INVALID_PARAMETERS = -52

- Hardware
int32 HARDWARE_FAILURE = -110
int32 HARDWARE_NOT_OK = -111
int32 LEARNING_MODE_ON = -112
int32 CALIBRATION_NOT_DONE = -113
int32 DIGITAL_IO_PANEL_ERROR = -114
int32 LED_MANAGER_ERROR = -115
int32 BUTTON_ERROR = -116
int32 WRONG_MOTOR_TYPE = -117
int32 TTL_WRITE_ERROR = -118
int32 TTL_READ_ERROR = -119
int32 CAN_WRITE_ERROR = -120
int32 CAN_READ_ERROR = -121
int32 NO_CONVEYOR_LEFT = -122
int32 NO_CONVEYOR_FOUND = -123
int32 CONVEYOR_ID_INVALID = -124
int32 CALIBRATION_IN_PROGRESS = -125

- Vision
int32 VIDEO_STREAM_ON_OFF_FAILURE = -170
int32 VIDEO_STREAM_NOT_RUNNING = -171
int32 OBJECT_NOT_FOUND = -172
int32 MARKERS_NOT_FOUND = -173

- Commander
Arm Commander
int32 ARM_COMMANDER_FAILURE = -220
int32 GOAL_STILL_ACTIVE = -221
int32 JOG_CONTROLLER_ENABLED = -222
int32 CONTROLLER_PROBLEMS = -223
int32 SHOULD_RESTART = -224
int32 JOG_CONTROLLER_FAILURE = -225

int32 COLLISION = -226

int32 PAUSE_TIMEOUT= -227
int32 CANCEL_PAUSE= -228

int32 PLAN_FAILED = -230
int32 NO_PLAN_AVAILABLE = -231
int32 INVERT_KINEMATICS_FAILURE = -232

Tool Commander
int32 TOOL_FAILURE = -251
int32 TOOL_ID_INVALID = -252
int32 TOOL_NOT_CONNECTED = -253
int32 TOOL_ROS_INTERFACE_ERROR = -254

- Pose Handlers
int32 POSES_HANDLER_CREATION_FAILED = -300
int32 POSES_HANDLER_REMOVAL_FAILED = -301
int32 POSES_HANDLER_READ_FAILURE = -302
int32 POSES_HANDLER_COMPUTE_FAILURE = -303

int32 DYNAMIC_FRAME_EDIT_FAILED = -305
int32 DYNAMIC_FRAME_CREATION_FAILED = -306
int32 CONVERT_FAILED = -307

int32 WORKSPACE_CREATION_FAILED = -308

- Trajectory Handler

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/geometry_msgs/html/index-msg.html

- Trajectory Handler
int32 TRAJECTORY_HANDLER_CREATION_FAILED = -310
int32 TRAJECTORY_HANDLER_REMOVAL_FAILED = -311
int32 TRAJECTORY_HANDLER_RENAME_FAILURE = -312
int32 TRAJECTORY_HANDLER_EXECUTE_REGISTERED_FAILURE = -313
int32 TRAJECTORY_HANDLER_EXECUTE_FAILURE = -314
int32 TRAJECTORY_HANDLER_GET_TRAJECTORY_FAILURE = -315
int32 TRAJECTORY_HANDLER_GET_TRAJECTORY_LIST_FAILURE = -316

- Programs Manager
int32 PROGRAMS_MANAGER_FAILURE = -320
int32 PROGRAMS_MANAGER_READ_FAILURE = -321
int32 PROGRAMS_MANAGER_UNKNOWN_LANGUAGE = -325
int32 PROGRAMS_MANAGER_NOT_RUNNABLE_LANGUAGE = -326
int32 PROGRAMS_MANAGER_EXECUTION_FAILED = -327
int32 PROGRAMS_MANAGER_STOPPING_FAILED = -328
int32 PROGRAMS_MANAGER_AUTORUN_FAILURE = -329
int32 PROGRAMS_MANAGER_WRITING_FAILURE = -330
int32 PROGRAMS_MANAGER_FILE_ALREADY_EXISTS = -331
int32 PROGRAMS_MANAGER_FILE_DOES_NOT_EXIST = -332

- Credentials
int32 CREDENTIALS_FILE_ERROR = -400
int32 CREDENTIALS_UNKNOWN_ERROR = -401

- System Api Client
int32 SYSTEM_API_CLIENT_UNKNOWN_ERROR = -440
int32 SYSTEM_API_CLIENT_INVALID_ROBOT_NAME = -441
int32 SYSTEM_API_CLIENT_REQUEST_FAILED = -442
int32 SYSTEM_API_CLIENT_UNKNOWN_COMMAND = -443
int32 SYSTEM_API_CLIENT_COMMAND_FAILED = -444

- Database
int32 DATABASE_DB_ERROR = -460
int32 DATABASE_SETTINGS_UNKNOWN = -461
int32 DATABASE_SETTINGS_TYPE_MISMATCH = -462
int32 DATABASE_FILE_PATH_UNKNOWN = -463

- Reports
int32 REPORTS_UNABLE_TO_SEND = -470
int32 REPORTS_SENDING_FAIL = -471
int32 REPORTS_FETCHING_FAIL = -472
int32 REPORTS_SERVICE_UNREACHABLE = -473

- Sound interface
int32 SOUND_FILE_NOT_FOUND = -500
int32 PROTECTED_SOUND_NAME = -501
int32 INVALID_SOUND_NAME = -502
int32 INVALID_SOUND_FORMAT = -503
int32 SOUND_TIMEOUT = -504

- I2C interface
int32 MISSING_I2C = -510

ObjectPose

float64 x
float64 y
float64 z

float64 roll
float64 pitch
float64 yaw

RobotState

geometry_msgs/Point position
niryo_robot_msgs/RPY rpy
geometry_msgs/Quaternion orientation

geometry_msgs/Twist twist
float64 tcp_speed

RPY

roll, pitch and yaw

float64 roll
float64 pitch
float64 yaw

HardwareStatus

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

std_msgs/Header header

Raspberry Pi board
int32 rpi_temperature

Ned, One,
string hardware_version

Hardware State
int8 ERROR = -1
int8 NORMAL = 0
int8 DEBUG = 1
int8 REBOOT = 2

int8 hardware_state

Motors
bool connection_up
string error_message
bool calibration_needed
bool calibration_in_progress

string[] motor_names
string[] motor_types

int32[] temperatures
float64[] voltages
int32[] hardware_errors
string[] hardware_errors_message

SoftwareVersion

string rpi_image_version
string ros_niryo_robot_version
string robot_version

string[] motor_names
string[] stepper_firmware_versions

Niryo Service files

GetBool

bool value

GetInt

int32 value

GetNameDescriptionList

string[] name_list
string[] description_list

GetString

string value

GetStringList

string[] string_list

Ping

string name
bool state

SetBool

bool value

int32 status
string message

SetFloat

float32 value

int32 status
string message

SetInt

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

int32 value

int32 status
string message

SetString

string value

int32 status
string message

Trigger

int32 status
string message

Niryo_robot_modbus

Niryo_robot_poses_handlers

This package is in charge of dealing with transforms, workspace, grips and trajectories.

Poses handlers node

Description - Poses handlers

The ROS Node is made of several services to deal with transforms, workspace, grips and trajectories.

It belongs to the ROS namespace: /niryo_robot_poses_handlers/ .

Workspaces

A workspace is de;ned by 4 markers that form a rectangle. With the help of the robot’s calibration tip, the marker positions are learned. The camera returns poses
(x, y, yaw) relative to the workspace. We can then infer the absolute object pose in robot coordinates.

Grips

When we know the object pose in robot coordinates, we can’t directly send this pose to the robot because we specify the target pose of the tool_link and not of the
actual TCP (tool center point). Therefore we introduced the notion of grip. Each end eBector has its own grip that speci;es where to place the robot with respect to
the object.

Currently, the notion of grip is not part of the python/tcp/blockly interface because it would add an extra layer of complexity that is not really necessary for the
moment.

Therefore we have a default grip for all tools that is selected automatically based on the current tool id. However, everything is ready if you want to de;ne custom
grips, e.g. for custom tools or for custom grip positions.

The vision pick loop

1. The camera detects objects relative to markers and sends x , y , yaw .
2. The object is placed on the workspace, revealing the object pose in robot coordinates x, y, z, roll, pitch, yaw.
3. The grip is applied on the absolute object pose and gives the pose the robot should move to.

Poses & trajectories

List of poses

Parameters - Poses handlers

Poses Handlers’ Parameters

Name Description

workspace_dir Path to the Workspace storage mother folder

grip_dir Path to the Grip storage mother folder

poses_dir Path to the Poses storage mother folder

dynamic_frame_dir Path to the dynamic frames storage mother folder

Services - Poses handlers

Poses Handlers’ Services

Name Message Type Description

manage_workspace ManageWorkspace Save/Delete a workspace

get_workspace_ratio GetWorkspaceRatio Get ratio of a workspace

rel rel rel

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

get_workspace_list GetNameDescriptionList Get list of workspaces name & description

get_workspace_poses GetWorkspaceRobotPoses Get workspace’s robot poses

get_workspace_points GetWorkspacePoints Get workspace’s robot points

get_workspace_matrix_poses GetWorkspaceMatrixPoses Get workspace’s robot matrix poses

get_target_pose GetTargetPose Get saved programs name

manage_pose ManagePose Save/Delete a Pose

get_pose GetPose Get Pose

get_pose_list GetNameDescriptionList Get list of poses name & description

manage_dynamic_frame ManageDynamicFrame Save/Edit/Delete a dynamic frame

get_dynamic_frame_list GetNameDescriptionList Get list of dynamic frame

get_dynamic_frame GetDynamicFrame Get dynamic frame

get_transform_pose GetTransformPose Get transform between two frames

Name Message Type Description

All these services are available as soon as the node is started.

Dependencies - Poses handlers

geometry_msgs
moveit_msgs
Niryo_robot_msgs
tf

Services & messages files - Poses handlers

GetDynamicFrame (Service)

string name

int32 status
string message
niryo_robot_poses_handlers/DynamicFrame dynamic_frame

GetPose (Service)

string name

int32 status
string message
niryo_robot_poses_handlers/NiryoPose pose

GetTargetPose (Service)

string workspace
float32 height_offset
float32 x_rel
float32 y_rel
float32 yaw_rel

int32 status
string message
niryo_robot_msgs/RobotState target_pose

GetTransformPose (Service)

string source_frame
string local_frame

geometry_msgs/Point position
niryo_robot_msgs/RPY rpy

int32 status
string message
geometry_msgs/Point position
niryo_robot_msgs/RPY rpy

GetWorkspaceMatrixPoses (Service)

string name

int32 status
string message
geometry_msgs/Point[] matrix_position
geometry_msgs/Quaternion[] matrix_orientation

GetWorkspacePoints (Service)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/geometry_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/moveit_msgs/html/index-msg.html
http://wiki.ros.org/tf

string name

int32 status
string message
geometry_msgs/Point[] points

GetWorkspaceRatio (Service)

string workspace

int32 status
string message
float32 ratio # width/height

GetWorkspaceRobotPoses (Service)

string name

int32 status
string message
niryo_robot_msgs/RobotState[] poses

ManageDynamicFrame (Service)

int32 SAVE = 1
int32 SAVE_WITH_POINTS = 2
int32 EDIT = 3
int32 DELETE = -1

int32 cmd

niryo_robot_poses_handlers/DynamicFrame dynamic_frame

int32 status
string message

ManagePose (Service)

int32 cmd
int32 SAVE = 1
int32 DELETE = -1

niryo_robot_poses_handlers/NiryoPose pose

int32 status
string message

ManageWorkspace (Service)

int32 SAVE = 1
int32 SAVE_WITH_POINTS = 2
int32 DELETE = -1

int32 cmd

niryo_robot_poses_handlers/Workspace workspace

int32 status
string message

NiryoPose (Message)

string name
string description

float64[] joints
geometry_msgs/Point position
niryo_robot_msgs/RPY rpy
geometry_msgs/Quaternion orientation

Workspace (Message)

string name # maximum lenght of workspace's name is 30 characters
string description

geometry_msgs/Point[] points
niryo_robot_msgs/RobotState[] poses

Niryo_robot_programs_manager

This package is in charge of interpreting/running/saving programs. It is used by Niryo Studio.

Programs manager node

The ROS Node is made of several services to deal with the storage and running of programs.

Calls are not available from the Python ROS Wrapper, as it is made to run its programs with the Python ROS Wrapper.

It belongs to the ROS namespace: /niryo_robot_programs_manager/ .

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Parameters - Programs manager

Programs Manager’s Parameters

Name Description

autorun_file_name Name of the file containing auto run infos

programs_dir Path to the Program storage mother folder

Services - Programs manager

Programs manager Services

Name Message Type Description

execute_program ExecuteProgram Executes a program

execute_program_autorun Trigger Executes autorun program

get_program GetProgram Retrieves saved program

get_program_autorun_infos GetProgramAutorunInfos Gets autorun settings

get_program_list GetProgramList Gets saved programs’ name

manage_program ManageProgram Saves and Deletes programs

set_program_autorun SetProgramAutorun Sets autorun settings

stop_program Trigger Stops the current running program

All these services are available as soon as the node is started whereas on standalone mode or not.

Dependencies - Programs manager

Niryo_robot_msgs
python-yaml
std_msgs

Services files - Programs manager

ExecuteProgram

bool execute_from_string

string name
string code_string

niryo_robot_programs_manager/ProgramLanguage language

int16 status
string message
string output

GetProgram

string name

niryo_robot_programs_manager/ProgramLanguage language

int32 status
string message

string code
string description

GetProgramAutorunInfos

int32 status
string message

niryo_robot_programs_manager/ProgramLanguage language
string name

Mode
int8 ONE_SHOT = 1
int8 LOOP = 2

int8 mode

GetProgramList

niryo_robot_programs_manager/ProgramLanguage language

string[] programs_names
niryo_robot_programs_manager/ProgramLanguageList[] list_of_language_list
string[] programs_description

ManageProgram

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://pyyaml.org/wiki/PyYAMLDocumentation
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html

Command
int32 SAVE = 1
int32 DELETE = -1
int8 cmd

Program Name
string name

- Creation
niryo_robot_programs_manager/ProgramLanguage language

string code
string description

bool allow_overwrite

int16 status
string message

SetProgramAutorun

Program language
niryo_robot_programs_manager/ProgramLanguage language

Program Name
string name

Mode
int8 DISABLE = 0
int8 ONE_SHOT = 1
int8 LOOP = 2

int8 mode

int16 status
string message

Messages files - Programs manager

ProgramIsRunning

bool program_is_running

int8 EXECUTION_ERROR = -2
int8 FILE_ERROR = -1
int8 NONE = 0
int8 PREEMPTED = 1
int8 SUCCESS = 2

int8 last_execution_status
string last_execution_msg

ProgramLanguage

int8 NONE = -1

int8 ALL = 0

Runnable
int8 PYTHON2 = 1
int8 PYTHON3 = 2

Not Runnable
int8 BLOCKLY = 66

int8 used

ProgramLanguageList

niryo_robot_programs_manager/ProgramLanguage[] language_list

ProgramList

string[] programs_names
niryo_robot_programs_manager/ProgramLanguageList[] list_of_language_list
string[] programs_description

Niryo_robot_rpi

This package deals with Raspberry Pi related stuff (Button, fans, I/O, leds, …).

Raspberry Pi Node

The ROS Node manages the following components:

Physical top button: executes actions when the button is pressed.
Digital I/O panel: gets commands and sends the current state of digital I/Os. Also controls tools like the Electromagnet.
Analog I/O panel: gets commands and sends the current state of analog I/Os.
End EBector I/O panel: gets commands and sends the current state of the digital I/Os of the end eBector panel on Ned2. Also controls tools like the
Electromagnet.
Robot fans.
Led: sets the LED color.
Shutdown Manager: shutdown or reboot the Raspberry.

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

ROS log: can remove all previous logs on start_up to prevent a lack of disk space in the long run (SD cards do not have infinite storage).

It belongs to the ROS namespace: /niryo_robot_rpi/ .

Note that this package should not be used when you are using Ned ROS stack on your computer in simulation mode. Executes actions when the button is
pressed.

Publisher - Raspberry Pi

RPI Package’s Publishers

Name Message Type Description

pause_state PausePlanExecution Publishes the current execution state launched when button is pressed

/niryo_robot/blockly/save_current_point std_msgs/Int32 Publishes current point when user is in Blockly page to save block by pressing button

/niryo_robot/rpi/is_button_pressed std_msgs/Bool Publishes the button state (true if pressed)

digital_io_state DigitalIOState Publishes the digital I/Os state by giving for each it’s pin / name / mode / state

analog_io_state AnalogIOState Publishes the analog I/Os state by giving for each it’s pin / name / mode / state

/niryo_robot/rpi/led_state std_msgs/Int8 Publishes the current LED color

ros_log_status LogStatus
Publishes the current log status (log size / available disk / boolean if should delete ros log on

startup)

Services - Raspberry Pi

RPI Services

Name Message Type Description

shutdown_rpi SetInt Shutdowns the Raspberry Pi

/niryo_robot/rpi/change_button_mode SetInt Changes top button mode (autorun program, blockly, nothing, …)

get_analog_io GetAnalogIO Gets analog IO state list

get_digital_io GetDigitalIO Gets digital IO state list

set_analog_io SetAnalogIO Sets an analog IO to the given value

set_digital_io SetDigitalIO Sets a digital IO to the given value

set_digital_io_mode SetDigitalIO Sets a digital IO to the given mode

set_led_state std_msgs/SetInt Sets LED state

set_led_custom_blinker LedBlinker Sets the LED in blink mode with the color given

purge_ros_logs SetInt Purges ROS log

set_purge_ros_log_on_startup SetInt Modifies the permanent settings that tell if the robot should purge its ROS log at each boot

Dependencies - Raspberry Pi

std_msgs
actionlib_msgs
sensor_msgs
Niryo_robot_msgs
Niryo_robot_arm_commander
Adafruit-GPIO==1.0.3
Adafruit-PureIO==1.0.1
Adafruit-BBIO==1.0.9
Adafruit-ADS1x15==1.0.2
board==1.0
smbus==1.1.post2
smbus2==0.4.1
spidev==3.5

Services files - Raspberry Pi

ChangeMotorConfig (Service)

int32[] can_required_motor_id_list
int32[] dxl_required_motor_id_list

int32 status
string message

GetAnalogIO (Service)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/msg/Int32.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Int8.html
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/actionlib_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/sensor_msgs/html/index-msg.html
https://github.com/adafruit/Adafruit_Python_GPIO
https://github.com/adafruit/Adafruit_Python_PureIO/tree/1.0.1
https://github.com/adafruit/adafruit-beaglebone-io-python/tree/1.0.9
https://github.com/adafruit/Adafruit_Python_ADS1x15
https://github.com/tjguk/dojo-board
https://i2c.wiki.kernel.org/index.php/I2C_Tools
https://github.com/kplindegaard/smbus2/tree/0.4.1
https://github.com/doceme/py-spidev

string name

int32 status
string message

float64 value

GetDigitalIO (Service)

string name

int32 status
string message

bool value

LedBlinker (Service)

uint8 LED_OFF = 0
uint8 LED_BLUE = 1
uint8 LED_GREEN = 2
uint8 LED_BLUE_GREEN = 3
uint8 LED_RED = 4
uint8 LED_PURPLE = 5
uint8 LED_RED_GREEN = 6
uint8 LED_WHITE = 7

bool activate
uint8 frequency # between 1hz and 100Hz
uint8 color
float32 blinker_duration # 0 for infinite

int32 status
string message

SetDigitalIO (Service)

string name
bool value

int32 status
string message

SetAnalogIO (Service)

string name
float64 value

int32 status
string message

SetIOMode (Service)

string name

int8 OUTPUT = 0
int8 INPUT = 1
int8 mode

int32 status
string message

SetPullup (Service)

string name
bool enable

int32 status
string message

Messages files - Raspberry Pi

AnalogIO

string name
float64 value

AnalogIOState (Topic)

niryo_robot_rpi/AnalogIO[] analog_inputs
niryo_robot_rpi/AnalogIO[] analog_outputs

DigitalIO

string name
bool value

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

DigitalIOState (Topic)

niryo_robot_rpi/DigitalIO[] digital_inputs
niryo_robot_rpi/DigitalIO[] digital_outputs

LogStatus (Topic)

std_msgs/Header header

in MB
int32 log_size
int32 available_disk_size
bool purge_log_on_startup

Niryo_robot_sound

This package deals with the sound of the robot.

Sound Node

The ROS Node is made of services to play, stop, import and delete a sound on the robot. It is also possible to set the volume of the robot.

It belongs to the ROS namespace: /niryo_robot_sound/ .

Parameters - Sound

Here is a list of the different parameters that allow you to adjust the default settings of the robot and the system sounds.

Parameters of the volume Sound component

Name Description Default value

default_volume Default volume on the real robot 100

default_volume_simulation Default volume in simulation 10

min_volume Minimum volume of the robot 0

max_volume Maximum volume of the robot 200

volume_file_path File where the volume of the real robot set by the user is stored “~/niryo_robot_saved_files/robot_sound_volume.txt”

volume_file_path_simulation File where the volume in simulation set by the user is stored “~/.niryo/simulation/robot_sound_volume.txt”

Parameters of the Sound component

Name Description Default value

path_user_sound Default volume on the real robot “~/niryo_robot_saved_files/niryo_robot_user_sounds”

path_user_sound_simulation Default volume in simulation “~/.niryo/simulation/niryo_robot_user_sounds”

path_robot_sound Minimum volume of the robot “niryo_robot_state_sounds”

robot_sounds/error_sound Sound played when an error occurs error.wav

robot_sounds/turn_on_sound Sound played at the start-up of the robot booting.wav

robot_sounds/turn_off_sound Sound played at shutdown stop.wav

robot_sounds/connection_sound Sound played an Niryo Studio connection connected.wav

robot_sounds/robot_ready_sound Sound played when the robot is ready ready.wav

robot_sounds/calibration_sound Sound played at start of calibration calibration.wav

State sounds

State Description Sound

Booting Sound played while booting Your browser does not support the audio element.

Ready Sound played when the robot is ready after booting Your browser does not support the audio element.

Calibration Sound played at start of calibration Your browser does not support the audio element.

Connected Notify of a connection to Niryo Studio Your browser does not support the audio element.

Reboot Sound played at start of a motor reboot Your browser does not support the audio element.

Warn Sound played when a warning occurs Your browser does not support the audio element.

Error Sound played when a robot/motor/raspberry/program/overheating error occurs Your browser does not support the audio element.

Shutdown Sound played at shutdown Your browser does not support the audio element.

Publisher - Sound

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Sound Package’s Publishers

Name Message Type Description

/niryo_robot_sound/sound std_msgs/String Publisesh the sound being played

/niryo_robot_sound/volume std_msgs/UInt8 Publishes the volume of the robot

/niryo_robot_sound/sound_database SoundList Publishes the sounds (and their duration) on the robot

Services - Sound

Sound Services

Name Message Type Description

/niryo_robot_sound/play PlaySound Plays a sound from the robot database

/niryo_robot_sound/stop Trigger Stops the sound being played

/niryo_robot_sound/set_volume SetInt Sets the volume percentage between 0 and 200%

/niryo_robot_sound/text_to_speech TextToSpeech Pronouncses a sentence via GTTS

/niryo_robot_sound/manage ManageSound Stops a sound being played

Subscribers - Sound

Sound Package subscribers

Topic name Message type Description

/niryo_robot_status/robot_status RobotStatus Retrieves the current robot status, and controls the sound accordingly (see Niryo_robot_status section)

/niryo_studio_connection std_msgs/Empty Catches Niryo Studio’s connection to make a sound.

Dependencies - Sound

std_msgs
niryo_robot_msgs
niryo_robot_status

Services & Messages files - Sound

SoundList (Message)

niryo_robot_sound/SoundObject[] sounds

SoundObject (Message)

string name
float64 duration

ManageSound (Service)

string sound_name

int8 ADD = 1
int8 DELETE = 2
int8 action

Data to add a new sound
string sound_data

int32 status
string message

PlaySound (Service)

string sound_name

float64 start_time_sec
float64 end_time_sec #if 0 or if end_time_sec>sound_duration the entire sound will be played

bool wait_end

int32 status
string message

TextToSpeech (Service)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/msg/String.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/UInt8.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Empty.html
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html

string text # < 100 char

int8 ENGLISH = 0
int8 FRENCH = 1
int8 SPANISH = 3
int8 MANDARIN = 4
int8 PORTUGUESE = 5

int8 language

bool success
string message

Sound API functions

In order to control the robot more easily than calling each topics & services one by one, a Python ROS Wrapper has been built on top of ROS.

For instance, a script playing sound via Python ROS Wrapper will look like:

from niryo_robot_led_ring.api import SoundRosWrapper

sound = SoundRosWrapper()
sound.play(sound.sounds[0])

This class allows you to control the sound of the robot via the internal API.

List of functions subsections:

Play sound
Sound database

Play sound

Play a sound from the robot If failed, raise NiryoRosWrapperException

Parameters: sound_name (str) – Name of the sound to play

start_time_sec (float) – start the sound from this value in seconds

end_time_sec (float) – end the sound at this value in seconds

wait_end (bool) – wait for the end of the sound before exiting the function

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Set the volume percentage of the robot. If failed, raise NiryoRosWrapperException

Parameters: sound_volume (int) – volume percentage of the sound (0: no sound, 100: max sound)

Returns: status, message

Return type: (int, str)

Stop a sound being played. If failed, raise NiryoRosWrapperException

Returns: status, message

Return type: (int, str)

Use gtts (Google Text To Speech) to interpret a string as sound Languages available are: - English: 0 - French: 1 - Spanish: 2 - Mandarin: 3 - Portuguese: 4

Parameters: text (string) – text to speek < 100 char

language (int) – language of the text

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Sound database

Get sound name list

class SoundRosWrapper(hardware_version='ned2', service_timeout=1)

play(sound_name, wait_end=True, start_time_sec=0, end_time_sec=0)

set_volume(sound_volume)

stop()

say(text, language=0)

class SoundRosWrapper(hardware_version='ned2', service_timeout=1)

sounds

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Returns: list of the sounds of the robot

Return type: list[string]

Delete a sound on the RaspberryPi of the robot. If failed, raise NiryoRosWrapperException

Parameters: sound_name (str) – name of the sound which needs to be deleted

Returns: status, message

Return type: (int, str)

Delete a sound on the RaspberryPi of the robot. If failed, raise NiryoRosWrapperException

Parameters: sound_name (str) – name of the sound which needs to be deleted

sound_data (str) – String containing the encoded data of the sound file (wav or mp3)

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Returns the duration in seconds of a sound stored in the robot database raise SoundRosWrapperException if the sound doesn’t exists

Parameters: sound_name (str) – name of sound

Returns: sound duration in seconds

Return type: float

Niryo_robot_status

Robot status Node

The ROS Node is listening to the topics of the robot to deduce the current state of the robot. It manages the status of the robot, the status of the logs and informs
about the overheating of the Raspberry PI and the out of limit joints.

It belongs to the ROS namespace: /niryo_robot_status/ .

Niryo Robot Status Table

Name Description Troubleshoot

SHUTDOWN The robot is being shut down

FATAL_ERROR ROS crash Please restart the robot

MOTOR_ERROR Motor voltage error, overheating, overload

Check the error code on Niryo Studio.

Restart the robot and check the wiring.

If the problem persists, contact customer service

COLLISION Arm collision detected
Restart your movement or switch to learning mode to

remove this error.

USER_PROGRAM_ERROR User program error
Launch a movement or switch to learning mode to

remove this error.

UNKNOWN Node not initialized

BOOTING ROS a and the Raspberry are booting up

If the startup seems to timeout, restart the robot

electrically.

If the problem persists, update the robot with ssh,

change the SD card or contact customer service.

UPDATE Robot update in progress Just wait and be patient :)

CALIBRATION_NEEDED New calibration requested Run a new calibration before processing any movement.

CALIBRATION_IN_PROGRESS Calibration in progress

If the calibration fails or takes longer than 30

seconds.

The status will return to CALIBRATION_NEED.

LEARNING_MODE Free motion enabled, the torques are disabled

STANDBY
Free motion disabled, the torques are enabled

and no user program is running

MOVING
A single motion or jog is being processed

and no user program is running

RUNNING_AUTONOMOUS A user program is running and the torques are enabled

delete_sound(sound_name)

import_sound(sound_name, sound_data)

get_sound_duration(sound_name)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

RUNNING_DEBUG A debug procedure is running A short press on the top button cancels it.

PAUSE User program error

A short press on the top button resumes the program,

a long press (on Ned2) or a double press (on Ned and

One)

cancels the program execution.

After 30 seconds, the program stops automatically.

LEARNING_MODE_AUTONOMOUS A user program is running and the torques are disabled

Name Description Troubleshoot

BOOTING

CALIBRATION_NEEDED

UNKNOWN

CALIBRATION_IN_PROGRESS

STANDBY

LEARNING_MODEMOVING

RUNNING_AUTONOMOUS

PAUSE LEARNING_MODE
AUTONOMOUS

FATAL_ERROR

COLLISION USER_PROGRAM_ERROR

MOTOR_ERROR

SHUTDOWN

COLOR LED ring color

From any
state

From a specific state

Robot status chart

Niryo Robot Status Diagram

Publisher - Robot Status

Robot Status Package’s Publishers

Name Message Type Latch Mode Description

/niryo_robot_status/robot_status RobotStatus True Publish the robot, log, overheating and out of bounds status.

Services - Robot Status

Robot Status Services

Name Message Type Description

/niryo_robot_status/advertise_shutdown Trigger Notify of a shutdown request

Subscribers - Robot Status

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Robot Status Package subscribers

Topic name Message type Description

/niryo_robot_hardware_interface/hardware_status HardwareStatus Detection of a motor or end effector panel error, raspberry overheating

niryo_robot_rpi/pause_state PausePlanExecution Detection of the pause state

/niryo_robot_arm_commander/is_active std_msgs/Bool Detection of a motion

/niryo_robot_arm_commander/is_debug_motor_active std_msgs/Bool Detection of a debug procedure

/niryo_robot/jog_interface/is_enabled std_msgs/Bool Detection of a jog motion

/niryo_robot_programs_manager/program_is_running ProgramIsRunning Detection of a user program

/niryo_robot_user_interface/is_client_connected std_msgs/Bool Detection of a pyniryo user

/niryo_robot/learning_mode/state std_msgs/Bool Detection of the free motion mode

/niryo_robot_arm_commander/collision_detected std_msgs/Bool Detection of collision

/joint_states sensor_msgs/JointState Get the joint state in order to detect an out of bounds

/ping_pyniryo std_msgs/Bool Detection of a pyniryo2 user

Dependencies - Robot Status

std_msgs
sensor_msgs
niryo_robot_msgs
niryo_robot_programs_manager
niryo_robot_arm_commander

Messages files - Robot Status

RobotStatus

int8 UPDATE=-7
int8 REBOOT=-6
int8 SHUTDOWN=-5
int8 FATAL_ERROR=-4 # Node crash
int8 MOTOR_ERROR=-3 # Electrical/overload or disconnected motor error
int8 COLLISION=-2
int8 USER_PROGRAM_ERROR=-1
int8 UNKNOWN=0
int8 BOOTING=1 # Robot is booting
int8 REBOOT_MOTOR=2
int8 CALIBRATION_NEEDED=3
int8 CALIBRATION_IN_PROGRESS=4
int8 LEARNING_MODE=5
int8 STANDBY=6 # Torque ON
int8 MOVING=7 # Moving with NiryoStudio interface or ros topics without user program
int8 RUNNING_AUTONOMOUS=8 # User program is running
int8 RUNNING_DEBUG=9 # Debug program is running
int8 PAUSE=10 # User program paused
int8 LEARNING_MODE_AUTONOMOUS=11 # User program is running + Learning mode activated
int8 LEARNING_TRAJECTORY = 12
int8 REBOOT_MOTOR=13

int8 robot_status
string robot_status_str
string robot_message

int8 FATAL=-3
int8 ERROR=-2
int8 WARN=-1
int8 NONE=0

int8 logs_status
string logs_status_str
string logs_message

bool out_of_bounds
bool rpi_overheating

Niryo_robot_system_api_client

This packages handle the flask server requests to manage:

Robot name
Wifi settings
Ethernet settings

Publisher - System API Client

System API Client Package’s Publishers

Name Message Type Description

/niryo_robot/wifi/status WifiStatus Publish the current wifi status

Services - System API Client

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/sensor_msgs/html/msg/JointState.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/sensor_msgs/html/index-msg.html

System API Client Services

Name Message Type Description

/niryo_robot/wifi/set_robot_name SetString Change the robot name

/niryo_robot/wifi/manage ManageWifi Change the wifi hotspot mode

/niryo_robot/ethernet/manage ManageEthernet Change the ethernet setup (ip address, netmask, gateway, dhcp) based on nmcli interface.

Services files - System API Client

ManageEthernet (Service)

int8 STATIC = 1
int8 AUTO = 2
int8 CUSTOM = 3

int8 profile

Only for the custom profile
string ip # ex: '192.168.1.73'
string mask # ex: '255.255.255.0'
string gateway # ex: '192.168.1.1'
Optional
string dns # ex: '8.8.8.8 4.4.4.4' separated by spaces

int32 status
string message

ManageWifi (Service)

int8 HOTSPOT = 0
int8 RESTART = 1
int8 DEACTIVATE = 2
int8 RECONNECT = 3

int8 cmd

int32 status
string message

Messages files - System API Client

WifiStatus (Message)

int8 UNKNOWN = 0
int8 HOTSPOT = 1
int8 DISABLED = 2
int8 CONNECTED = 3
int8 DISCONNECTED = 4

int8 status

Niryo robot tools commander

Provides functionalities to control end-effectors and accessories for Ned.

This package allows to manage the TCP (Tool Center Point) of the robot. If the functionality is activated, all the movements (in Cartesian coordinates [x, y, z, roll,
pitch, yaw]) of the robot will be performed according to this TCP. The same program can then work with several tools by adapting the TCP transformation to them.
By default this feature is disabled, but can be enabled through the robot services.

Tools Commander node

The ROS Node is made of services to equip tool, an action server for tool command and topics for the current tool or the tool state.

It belongs to the ROS namespace: /niryo_robot_tools_commander/ .

Action server - tools

Tools Package Action Server

Name Message Type Description

action_server ToolAction Command the tool through an action server

Publisher - tools

Tools Package Publishers

Name Message Type Description

current_id std_msgs/Int32 Publishes the current tool ID

tcp TCP Publishes if the TCP (Tool Center Point) is enabled and transformation between the tool_link and the TCP

Services - tools

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/msg/Int32.html

Tools Package Services

Name Message Type Description

update_tool std_srvs/Trigger Pings/scans for a dxl motor flashed with an ID corresponding to a tool and equip it (if found)

equip_electromagnet SetInt Equips the electromagnet with the motor ID given as parameter

enable_tcp SetBool

Enables or disablse the TCP (Tool Center Point) functionality.

When we activate it, the transformation will be the last one saved since the robot started.

By default it will be the one of the equipped tool.

set_tcp SetTCP Activates the TCP (Tool Center Point) functionality and defines a new TCP transformation.

reset_tcp std_srvs/Trigger Resets the TCP transformation. By default it will be the one of the equipped tool.

Dependencies - tools

Niryo_robot_msgs
std_msgs
geometry_msgs

Action files - tools

ToolAction (Action)

goal
niryo_robot_tools_commander/ToolCommand cmd

result
int32 status
string message

feedback
int32 progression

Messages files - tools

ToolCommand (Message)

Gripper
int8 OPEN_GRIPPER = 1
int8 CLOSE_GRIPPER = 2

Vacuump pump
int8 PULL_AIR_VACUUM_PUMP = 10
int8 PUSH_AIR_VACUUM_PUMP = 11

Tools controlled by digital I/Os
int8 SETUP_DIGITAL_IO = 20
int8 ACTIVATE_DIGITAL_IO = 21
int8 DEACTIVATE_DIGITAL_IO = 22

uint8 cmd_type

Gripper1= 11, Gripper2=12, Gripper3=13, VaccuumPump=31, Electromagnet=30
int8 tool_id

if gripper Ned1/One
uint16 speed

if gripper Ned2
uint8 max_torque_percentage
uint8 hold_torque_percentage

if vacuum pump or electromagnet grove
bool activate

if tool is set by digital outputs (electromagnet)
string gpio

TCP (Message)

bool enabled

geometry_msgs/Point position
niryo_robot_msgs/RPY rpy
geometry_msgs/Quaternion orientation

Services files - tools

SetTCP (Service)

geometry_msgs/Point position

#Only one of the two is required.
#If both are filled, the quaternion will be chosen by default
niryo_robot_msgs/RPY rpy
geometry_msgs/Quaternion orientation

int32 status
string message

Niryo_robot_user_interface

This packages handle high-level user interface commands coming TCP requests and also system-related features like I/Os, LED and fans.

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_srvs/html/srv/Trigger.html
http://docs.ros.org/melodic/api/std_srvs/html/srv/Trigger.html
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/geometry_msgs/html/index-msg.html

You can find their documentations here:

TCP Server

Use Ned’s TCP server

Ned is permanently running a TCP Server to acquire requests. This server is built on top of the Ned Python ROS Wrapper (index.html#document-
source/ros_wrapper).

It oBers a simple way for developers to create programs for robot and to control them via remote communication on a computer, on a mobile or any device with
network facilities.

Programs can communicate through network TCP with the robots in any language available.

Connection

To access the server, you will have to use to robot’s IP adress and communicate via the port 40001.

Communication

Only one client can communicate with the server (reconnection effective but no multi clients).

The server answers only after the command is done, so it can’t deal with multiple commands at the same time.

Packet convention

General format

For easier usage and easier debugging, the communication is based on JSON format.

Every package have this following shape: <json_packet_size>{<json_content>}<payload> .

The JSON packet size is an unsigned short coded on 2 bytes.

The JSON contains command’s name & params.

Payload contains heavy data like an image.

Request

Format - Request

As no function requests a payload in input, requests have the following.

Format: <json_packet_size>{'param_list': [<param_1>, <param_2>,], 'command': <command_str>}

Examples - Request

Calibrate auto: {'param_list': ['AUTO'], 'command': 'CALIBRATE'}

Move joints: {'param_list': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'command': 'MOVE_JOINTS'}

Answer

Format - Answer

Firstly, answers indicate to the user if its command has been well executed. This is indicated in the JSON by the parameter “status”.

A successful answer will have the format:

{'status': 'OK', 'list_ret_param': [<param_1>, <param_2>,], 'payload_size': <payload_size_int>, 'command': <command_str>}

<payload_str>

An unsuccessful answer will have the format: {'status': 'KO', 'message': <message_str>}

Examples - Answer

Calibrate Auto: {'status': 'OK', 'list_ret_param': [], 'payload_size': 0, 'command': 'CALIBRATE'}

Get Pose: {'status': 'OK', 'list_ret_param': [0.2, 0.15, 0.35, 0.5, -0.6, 0.1], 'payload_size': 0, 'command': 'GET_POSE'}

Commands enum for TCP server

Enumeration of all commands used

class CommandEnum

CALIBRATE= 0

SET_LEARNING_MODE= 1

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

GET_LEARNING_MODE= 2

SET_ARM_MAX_VELOCITY= 3

SET_JOG_CONTROL= 4

GET_JOINTS= 10

GET_POSE= 11

GET_POSE_QUAT= 12

MOVE_JOINTS= 20

MOVE_POSE= 21

SHIFT_POSE= 22

MOVE_LINEAR_POSE= 23

SHIFT_LINEAR_POSE= 24

JOG_JOINTS= 25

JOG_POSE= 26

FORWARD_KINEMATICS= 27

INVERSE_KINEMATICS= 28

GET_POSE_SAVED= 50

SAVE_POSE= 51

DELETE_POSE= 52

GET_SAVED_POSE_LIST= 53

PICK_FROM_POSE= 60

PLACE_FROM_POSE= 61

PICK_AND_PLACE= 62

GET_TRAJECTORY_SAVED= 80

GET_SAVED_TRAJECTORY_LIST= 81

EXECUTE_REGISTERED_TRAJECTORY= 82

EXECUTE_TRAJECTORY_FROM_POSES= 83

EXECUTE_TRAJECTORY_FROM_POSES_AND_JOINTS= 84

SAVE_TRAJECTORY= 85

SAVE_LAST_LEARNED_TRAJECTORY= 86

UPDATE_TRAJECTORY_INFOS= 87

DELETE_TRAJECTORY= 88

CLEAN_TRAJECTORY_MEMORY= 89

GET_SAVED_DYNAMIC_FRAME_LIST= 95

GET_SAVED_DYNAMIC_FRAME= 96

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

SAVE_DYNAMIC_FRAME_FROM_POSES= 97

SAVE_DYNAMIC_FRAME_FROM_POINTS= 98

EDIT_DYNAMIC_FRAME= 99

DELETE_DYNAMIC_FRAME= 100

MOVE_RELATIVE= 101

MOVE_LINEAR_RELATIVE= 102

UPDATE_TOOL= 120

OPEN_GRIPPER= 121

CLOSE_GRIPPER= 122

PULL_AIR_VACUUM_PUMP= 123

PUSH_AIR_VACUUM_PUMP= 124

SETUP_ELECTROMAGNET= 125

ACTIVATE_ELECTROMAGNET= 126

DEACTIVATE_ELECTROMAGNET= 127

GET_CURRENT_TOOL_ID= 128

GRASP_WITH_TOOL= 129

RELEASE_WITH_TOOL= 130

ENABLE_TCP= 140

SET_TCP= 141

RESET_TCP= 142

TOOL_REBOOT= 145

SET_PIN_MODE= 150

DIGITAL_WRITE= 151

DIGITAL_READ= 152

GET_DIGITAL_IO_STATE= 153

GET_HARDWARE_STATUS= 154

ANALOG_WRITE= 155

ANALOG_READ= 156

GET_ANALOG_IO_STATE= 157

CUSTOM_BUTTON_STATE= 158

SET_CONVEYOR= 180

UNSET_CONVEYOR= 181

CONTROL_CONVEYOR= 182

GET_CONNECTED_CONVEYORS_ID= 183

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

GET_IMAGE_COMPRESSED= 200

GET_TARGET_POSE_FROM_REL= 201

GET_TARGET_POSE_FROM_CAM= 202

VISION_PICK= 203

MOVE_TO_OBJECT= 205

DETECT_OBJECT= 204

GET_CAMERA_INTRINSICS= 210

SAVE_WORKSPACE_FROM_POSES= 220

SAVE_WORKSPACE_FROM_POINTS= 221

DELETE_WORKSPACE= 222

GET_WORKSPACE_RATIO= 223

GET_WORKSPACE_LIST= 224

SET_IMAGE_BRIGHTNESS= 230

SET_IMAGE_CONTRAST= 231

SET_IMAGE_SATURATION= 232

GET_IMAGE_PARAMETERS= 235

PLAY_SOUND= 240

SET_VOLUME= 241

STOP_SOUND= 242

DELETE_SOUND= 243

IMPORT_SOUND= 244

GET_SOUNDS= 245

GET_SOUND_DURATION= 246

SAY= 247

LED_RING_SOLID= 250

LED_RING_TURN_OFF= 251

LED_RING_FLASH= 252

LED_RING_ALTERNATE= 253

LED_RING_CHASE= 254

LED_RING_WIPE= 255

LED_RING_RAINBOW= 256

LED_RING_RAINBOW_CYCLE= 257

LED_RING_RAINBOW_CHASE= 258

LED_RING_GO_UP= 259

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Niryo_robot_vision

This package is the one dealing with all vision related stuff.

Vision Node

The ROS Node is made of several services to deal with video streaming, object detection… The node is working exactly the same way if you chose to use it on
simulation or reality.

This node can be launched locally in a standalone mode via the command:

roslaunch niryo_robot_vision vision_node_local.launch

Configuration (Frame Per Second, Camera Port, Video Resolution) can be edited in the config file:

For “standard” Node: niryo_robot_vision/config/video_server_setup.yaml
For local Node: niryo_robot_vision/config/video_server_setup_local.yaml

It belongs to the ROS namespace: /niryo_robot_vision/ .

Parameters - Vision

Vision Package’s Parameters

Name Description

frame_rate Streams frame rate

simulation_mode
Sets to true if you are using the gazebo simulation.

It will adapt how the node get its video stream

debug_compression_quality Debugs Stream compression quality

stream_compression_quality Streams compression quality

subsampling Streams subsampling factor

Publisher - Vision

Vision Package’s Publishers

Name Message Type Description

compressed_video_stream sensor_msgs/CompressedImage Publishes the last image read as a compressed image

video_stream_parameters ImageParameters Publishes the brightness, contrast and saturation settings of the video stream

Services - Vision

Programs manager Services

Name Message Type Description

debug_colors DebugColorDetection Returns an annotated image to emphasize what happened with color detection

debug_markers DebugMarkers Returns an annotated image to emphasize what happened with markers detection

obj_detection_rel ObjDetection Object detection service

start_stop_video_streaming SetBool Starts or stops video streaming

take_picture TakePicture Saves a picture in the specified folder

set_brightness SetImageParameter Sets the brightness of the video stream

set_contrast SetImageParameter Sets the contrast of the video stream

set_saturation SetImageParameter Sets the saturation of the video stream

visualization Visualization Add visuals markers of objects detected by the vision kit to rviz

All these services are available as soon as the node is started.

LED_RING_GO_UP_DOWN= 260

LED_RING_BREATH= 261

LED_RING_SNAKE= 262

LED_RING_CUSTOM= 263

LED_RING_SET_LED= 264

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/sensor_msgs/html/msg/CompressedImage.html

Dependencies - Vision

Niryo_robot_msgs
sensor_msgs

Topics files - Vision

ImageParameters (Topic)

float64 brightness_factor
float64 contrast_factor
float64 saturation_factor

Services files - Vision

DebugColorDetection (Service)

string color

sensor_msgs/CompressedImage img

DebugMarkers (Service)

bool markers_detected
sensor_msgs/CompressedImage img

ObjDetection (Service)

string obj_type
string obj_color
float32 workspace_ratio
bool ret_image

int32 status

niryo_robot_msgs/ObjectPose obj_pose

string obj_type
string obj_color

sensor_msgs/CompressedImage img

TakePicture (Service)

string path

bool success

SetImageParameter (Service)

float64 factor

int32 status
string message

Visualization (Service)

string workspace
bool clearing

int32 status

Niryo_robot_led_ring

This package is the one managing the LED Ring of Ned2.

It is composed of one node, receiving commands and the current robot status, and publishing LED Ring states.

The LED Ring is composed of 30 WS2811 RGB LEDs, controlled by the package with the rpi_ws281x library.

LED Ring node

The ROS Node is made to manage the LED Ring state, and to publish its currents status and state on ROS topics. It uses a class implementing several animation (11
for now), allowing to control the LED Ring or to display the current robot status. The LED Ring is also implemented in Rviz.

The LED Ring can either be:

in ROBOT STATUS mode: the LED is displaying the status of the robot.
in USER mode: the user can control the LED Ring with the several methods implemented, through

Blockly , Pyniryo or Python ROS Wrapper .

Robot status mode

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/sensor_msgs/html/index-msg.html
https://github.com/rpi-ws281x/rpi-ws281x-python
https://docs.niryo.com/product/niryo-studio/source/blockly_api.html
https://docs.niryo.com/dev/pyniryo/index.html

When displaying the robot status, the LED Ring has several states which represent diBerent modes and error status. Refer to the following table. The node
subscribes to the ROS topic /niryo_robot_status/robot_status , published by the package RobotStatus (index.html#robotstatus).

Animation and color Description Troubleshooting

White Breath Robot is booting N/A

Blue Chase Calibration is needed Press the Custom button, or launch a calibration

Blue Snake Calibration in progress N/A

Blue Breath Free Motion enabled N/A

3 Yellow Flashing Calibration start N/A

Green Breath Free Motion disabled, torque enabled N/A

Solid Green Program in progress N/A

Green Chase Program paused Long press on the TOP button to cancel the program, short press to resume

Orange Breath Program execution error Launch a new action to clear this state

Flashing Orange Collision Launch a new action to clear this state

Solid Orange Joint out of bounds Switch to Free Motion mode to bring the joints within limits.

1 Purple Flashing New connection form Niryo Studio N/A

2 Purple Flashing Save a robot positions from the ‘Save’ button N/A

Flashing Red Motor error / Raspberry overheating Please check the error on Niryo Studio.

Solid Red ROS Crash Please restart the robot.

User mode

Several animations are implemented to allow the user diBerent ways to control the LED Ring. Refer to the following table. The node receives commands through the
service /niryo_robot_led_ring/set_user_animation (see the service section)

 Important

Ned must be in autonomous mode in order to allow the user to control the LED Ring.

Animation Appearance Gif

None LEDs are turned off

Solid Set the whole LED Ring to the same color at once

Flashing Flashes a color according to a frequency

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_none.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_solid.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_flash.gif

Alternate The different colors are alternated one after the other.

Chase Movie theater light style chase animation.

Color Wipe
Wipe a color across the LED Ring.

Similar to go_up, but LEDs are not turned off at the end.

Rainbow Draws rainbow that fades across all LEDs at once.

Rainbow cycle Draw rainbow that uniformly distributes itself across all LEDs.

Rainbow chase Rainbow chase animation.

Animation Appearance Gif

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_alternate.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_chase.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_wipe.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_rainbow.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_rainbow_cycle.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_rainbow_chase.gif

Go up
LEDs turn on like a loading circle until lighting up the whole LED Ring.

and are then all turned off at the same time.

Go up and down Like go_up, but LEDs are turned off the same way they are turned on.

Breath Variation of light intensity to imitate breathing.

Snake Luminous snake that turns around the LED Ring.

Animation Appearance Gif

 Note

When displaying the robot status, the LED Ring commander uses those methods, with the default parameters defined below.

It belongs to the ROS namespace: /niryo_robot_led_ring/ .

Parameters - LED Ring

Firstly, the LED Ring component, controlled with the rpi_ws281x library (https://github.com/rpi-ws281x/rpi-ws281x-python), through the Python class PixelStrip, is
parameterizable. Default parameters are set in the led_strim_params.yaml file of the /config folder of the package

Parameters of the Led Ring component

Name Description Default value

led_count Number of LED pixels in the LED Ring 30

led_pin
Raspberry Pi GPIO pin connected to the pixels

It must support PWM.
13

led_freq_hs LED signal frequency in Hertz 800khz

led_dma DMA channel to use for generating signal 10

led_brightness LEDs brightness. Set to 0 for darkest and 255 for brightest 255

led_invert True to invert the signal (when using NPN transistor level shift) True

led_channel the PWM channel to use 0

Another configuration file, the led_ring_params.yaml, sets the default parameters of LED Ring animations.

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_goup.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_goupdown.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_breath.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_snake.gif
https://github.com/rpi-ws281x/rpi-ws281x-python

Parameters of the LED Ring animations

Name Description Default value

default_flashing_period Default Flashing animation period in seconds 0.25

default_alternate_period Default Alternate animation period in seconds 1

default_chase_period Default Chase animation period in seconds 4

default_colorwipe_period Default Wipe animation period in seconds 5

default_rainbow_period Default Rainbow animation period in seconds 5

default_rainbowcycle_period Default Rainbow cycle animation period in seconds 5

default_rainbowchase_period Default Rainbow chase animation period in seconds 5

default_goup_period Default Go up animation period in seconds 5

default_goupanddown_period Default Go up and down animation period in seconds 5

default_breath_period Default Breath animation period in seconds 4

default_snake_period Default Snake animation period in seconds 1.5

led_offset Offset ID between the LED with the ID 0 and the ID of the LED at the back of the robot. 8

simulation_led_ring_markers_publish_rate Rviz LED ring markers publishinf rate in simulation mode 20

led_ring_markers_publish_rate Rviz LED ring markers publishing rate on a real robot 5

Services - LED Ring

The ROS node implements one service, designed for the user to control the LED Ring.

LED Ring Package services

Name Message type Description

set_user_animation LedUser

Allows user to control the LED Ring, with implemented animations. A new request

will interrupt the previous one, if still playing. Depending on the wait boolean field

and the iterations field of the request, the service will either answer immediately after

launching the animation, or wait for the animation to finish to answer.

set_led_color SetLedColor Lights up a LED identified by an ID

Publishers - LED Ring

LED Ring Package publishers

Name Message type Description

led_ring_status LedRingStatus

Publishes the status of the LED Ring, providing information on the current mode

(displaying robot status or controlled by user if the robot works in AUTONOMOUS mode),

the current animation played and the animation color (except for rainbow methods, where

the animation color is not defined). Publishes every time at least one field changed.

visualization_marker_array visualization_msgs/MarkerArray
Publishes shapes representing LEDs when Ned is used in simulation with Rviz,

as a list of 30 visualization_msgs/Marker of size 30.

Subscribers - LED Ring

LED Ring Package subscribers

Topic name Message type Description

/niryo_robot_status/robot_status RobotStatus Retrieves the current robot status, and control LED accordingly (see Niryo_robot_status section)

/niryo_robot/blockly/save_current_point std_msgs/Int32 Catches the ‘Save Point’ action to make the LED ring blink.

/niryo_studio_connection std_msgs/Empty Catches the Niryo Studio connection to make the LED ring blink.

Dependencies - LED Ring

niryo_robot_msgs
std_msgs
visualization_msgs
rpi_ws281x==4.3.0

Services files - LED Ring

LedUser (Service)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/visualization_msgs/html/msg/MarkerArray.html
http://docs.ros.org/melodic/api/visualization_msgs/html/msg/Marker.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Int32.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Empty.html
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/visualization_msgs/html/index-msg.html
https://github.com/rpi-ws281x/rpi-ws281x-python/tree/v4.3.0

niryo_robot_led_ring/LedRingAnimation animation_mode

std_msgs/ColorRGBA[] colors
float64 period # Time of 1 iteration in seconds
int16 iterations

The service either wait for the iterations to finish to answer,
or answer immediatly a Success after launching the function of Led Ring control.
if iterations is 0, answer immediatly in any case, because the function never
stops.
bool wait_end

int32 status
string message

SetLedColor (Service)

int8 led_id
std_msgs/ColorRGBA color

int32 status
string message

Messages files - LED Ring

LedRingAnimation (Message)

int32 NONE = -1
int32 SOLID = 1
int32 FLASHING = 2
int32 ALTERNATE = 3
int32 CHASE = 4
int32 COLOR_WIPE = 5
int32 RAINBOW = 6
int32 RAINBOW_CYLE = 7
int32 RAINBOW_CHASE = 8
int32 GO_UP = 9
int32 GO_UP_AND_DOWN = 10
int32 BREATH = 11
int32 SNAKE = 12
int32 CUSTOM = 13

int32 animation

LedRingCurrentState (Message)

Header header
std_msgs/ColorRGBA[] led_ring_colors

LedRingStatus (Message)

int32 ROBOT_STATUS = 1
int32 USER = 2

int32 led_mode

niryo_robot_led_ring/LedRingAnimation animation_mode

std_msgs/ColorRGBA animation_color # except for rainbow related animation

LED Ring API functions

In order to control the robot more easily than calling each topics & services one by one, a Python ROS Wrapper has been built on top of ROS.

For instance, a script turning on the LED Ring via Python ROS Wrapper will look like:

from niryo_robot_led_ring.api import LedRingRosWrapper

led_ring = LedRingRosWrapper()
led_ring.solid(color=[255, 255, 255])

This class allows you to control the robot via internal API. By controlling, we mean using the LED ring

List of functions subsections:

Custom animations functions
Pre-made animations functions

Custom animations functions

Lights up an LED in one colour. RGB colour between 0 and 255.

Example:

class LedRingRosWrapper(hardware_version='ned2', service_timeout=1)

set_led_color(led_id, color)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

from std_msgs.msg import ColorRGBA

led_ring.set_led_color(5, [15, 50, 255])
led_ring.set_led_color(5, ColorRGBA(r=15, g=50, b=255))

Parameters: led_id (int) – Id of the led: between 0 and 29

color (list[float] or ColorRGBA) – Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Sends a colour command to all LEDs of the LED ring. The function expects a list of colours for the 30 LEDs of the robot.

Example:

led_list = [[i / 30. * 255 , 0, 255 - i / 30.] for i in range(30)]
led_ring.custom(led_list)

Parameters: led_colors (list[list[float] or ColorRGBA]) – List of size 30 of led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.

Returns: status, message

Return type: (int, str)

Pre-made animations functions

Sets the whole Led Ring to a fixed color.

Example:

from std_msgs.msg import ColorRGBA

led_ring.solid([15, 50, 255])
led_ring.solid(ColorRGBA(r=15, g=50, b=255), True)

Parameters: color (list[float] or ColorRGBA) – Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.

wait (bool) – The service wait for the animation to finish or not to answer. For this method, the action is quickly done, so waiting doesn’t take a lot of

time.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Turns off all Leds

Example:

led_ring.turn_off()

Parameters: wait (bool) – The service wait for the animation to finish or not to answer. For this method, the action is quickly done, so waiting doesn’t take a lot of time.

Returns: status, message

Return type: (int, str)

Flashes a color according to a frequency. The frequency is equal to 1 / period.

Examples:

from std_msgs.msg import ColorRGBA

led_ring.flashing([15, 50, 255])
led_ring.flashing([15, 50, 255], 1, 100, True)
led_ring.flashing([15, 50, 255], iterations=20, wait=True)

frequency = 20 # Hz
total_duration = 10 # seconds
led_ring.flashing(ColorRGBA(r=15, g=50, b=255), 1./frequency, total_duration * frequency , True)

custom(led_colors)

class LedRingRosWrapper(hardware_version='ned2', service_timeout=1)

solid(color, wait=False)

turn_off(wait=False)

flashing(color, period=0, iterations=0, wait=False)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Parameters: color (list[float] or ColorRGBA) – Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.

period (float) – Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) – Number of consecutive flashes. If 0, the Led Ring flashes endlessly.

wait (bool) – The service wait for the animation to finish all iterations or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Several colors are alternated one after the other.

Examples:

from std_msgs.msg import ColorRGBA

color_list = [
 ColorRGBA(r=15, g=50, b=255),
 [255, 0, 0],
 [0, 255, 0],
]

led_ring.alternate(color_list)
led_ring.alternate(color_list, 1, 100, True)
led_ring.alternate(color_list, iterations=20, wait=True)

Parameters: color_list (list[list[float] or ColorRGBA]) – Led color list of lists of size 3[R, G, B] or ColorRGBA objects. RGB channels from 0 to 255.

period (float) – Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) – Number of consecutive alternations. If 0, the Led Ring alternates endlessly.

wait (bool) – The service wait for the animation to finish all iterations or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Movie theater light style chaser animation.

Examples:

from std_msgs.msg import ColorRGBA

led_ring.chase(ColorRGBA(r=15, g=50, b=255))
led_ring.chase([15, 50, 255], 1, 100, True)
led_ring.chase(ColorRGBA(r=15, g=50, b=255), iterations=20, wait=True)

Parameters: color (list or ColorRGBA) – Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.

period (float) – Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) – Number of consecutive chase. If 0, the animation continues endlessly. One chase just lights one Led every 3 Leds.

wait (bool) – The service wait for the animation to finish all iterations or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Wipes a color across the LED Ring, light a LED at a time.

Examples:

from std_msgs.msg import ColorRGBA

led_ring.wipe(ColorRGBA(r=15, g=50, b=255))
led_ring.wipe([15, 50, 255], 1, True)
led_ring.wipe(ColorRGBA(r=15, g=50, b=255), wait=True)

Parameters: color (list[float] or ColorRGBA) – Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.

period (float) – Execution time for a pattern in seconds. If 0, the default time will be used.

wait (bool) – The service wait for the animation to finish or not to answer.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Draws rainbow that fades across all LEDs at once.

Examples:

alternate(color_list, period=0, iterations=0, wait=False)

chase(color, period=0, iterations=0, wait=False)

wipe(color, period=0, wait=False)

rainbow(period=0, iterations=0, wait=False)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

led_ring.rainbow()
led_ring.rainbow(5, 2, True)
led_ring.rainbow(wait=True)

Parameters: period (float) – Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) – Number of consecutive rainbows. If 0, the animation continues endlessly.

wait (bool) – The service wait for the animation to finish or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Draws rainbow that uniformly distributes itself across all LEDs.

Examples:

led_ring.rainbow_cycle()
led_ring.rainbow_cycle(5, 2, True)
led_ring.rainbow_cycle(wait=True)

Parameters: period (float) – Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) – Number of consecutive rainbow cycles. If 0, the animation continues endlessly.

wait (bool) – The service wait for the animation to finish or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Rainbow chase animation, like the led_ring_chase method.

Examples:

led_ring.rainbow_chase()
led_ring.rainbow_chase(5, 2, True)
led_ring.rainbow_chase(wait=True)

Parameters: period (float) – Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) – Number of consecutive rainbow cycles. If 0, the animation continues endlessly.

wait (bool) – The service wait for the animation to finish or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

LEDs turn on like a loading circle, and are then all turned off at once.

Examples:

from std_msgs.msg import ColorRGBA

led_ring.go_up(ColorRGBA(r=15, g=50, b=255))
led_ring.go_up([15, 50, 255], 1, 100, True)
led_ring.go_up(ColorRGBA(r=15, g=50, b=255), iterations=20, wait=True)

Parameters: color (list[float] or ColorRGBA) – Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.

period (float) – Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) – Number of consecutive turns around the Led Ring. If 0, the animation continues endlessly.

wait (bool) – The service wait for the animation to finish or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

LEDs turn on like a loading circle, and are turned off the same way.

Examples:

from std_msgs.msg import ColorRGBA

led_ring.go_up_down(ColorRGBA(r=15, g=50, b=255))
led_ring.go_up_down([15, 50, 255], 1, 100, True)
led_ring.go_up_down(ColorRGBA(r=15, g=50, b=255), iterations=20, wait=True)

rainbow_cycle(period=0, iterations=0, wait=False)

rainbow_chase(period=0, iterations=0, wait=False)

go_up(color, period=0, iterations=0, wait=False)

go_up_down(color, period=0, iterations=0, wait=False)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Parameters: color (list[float] or ColorRGBA) – Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.

period (float) – Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) – Number of consecutive turns around the Led Ring. If 0, the animation continues endlessly.

wait (bool) – The service wait for the animation to finish or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Variation of the light intensity of the LED ring, similar to human breathing.

Examples:

from std_msgs.msg import ColorRGBA

led_ring.breath(ColorRGBA(r=15, g=50, b=255))
led_ring.breath([15, 50, 255], 1, 100, True)
led_ring.breath(ColorRGBA(r=15, g=50, b=255), iterations=20, wait=True)

Parameters: color (list[float] or ColorRGBA) – Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.

period (float) – Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) – Number of consecutive turns around the Led Ring. If 0, the animation continues endlessly.

wait (bool) – The service wait for the animation to finish or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

A small coloured snake (certainly a python :D) runs around the LED ring.

Examples:

from std_msgs.msg import ColorRGBA

led_ring.snake(ColorRGBA(r=15, g=50, b=255))
led_ring.snake([15, 50, 255], 1, 100, True)
led_ring.snake(ColorRGBA(r=15, g=50, b=255), iterations=20, wait=True)

Parameters: color (list[float] or ColorRGBA) – Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.

period (float) – Execution time for a pattern in seconds. If 0, the default duration will be used.

iterations (int) – Number of consecutive turns around the Led Ring. If 0, the animation continues endlessly.

wait (bool) – The service wait for the animation to finish or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Low Level Packages

In this section, you will have access to all information about each Niryo robot’s ROS hardware stack packages, dedicated to low-level interfaces

Niryo Robot Hardware Interface

This package handles packages related to the robot’s hardware.
It launches hardware interface nodes, motors communication and driver.

Global overview of hardware stack packages organization.

Hardware interface Node

This node has been conceived to instantiate all the interfaces we need to have a fully functional robot.

Among those interfaces we have:

breath(color, period=0, iterations=0, wait=False)

snake(color, period=0, iterations=0, wait=False)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/hardware_stack_nodes.png

Conveyor Interface
Joints Interface
Tools Interface
Cpu Interface
End Effector Interface (Ned2 only)
Can Driver (Ned and One Only)
Ttl Driver

It belongs to the ROS namespace: /niryo_robot_hardware_interface/ .

Parameters

Hardware Interface’s Parameters

Name Description

publish_hw_status_frequency
Publishes rate for hardware status.

Default : ‘2.0’

publish_software_version_frequency
Publishes rate for software status.

Default : ‘2.0’

Dependencies

Tools Interface
Joints Interface
Conveyor Interface
CPU Interface
Niryo_robot_msgs

Services, Topics and Messages

Published topics

Hardware Interface’s Published Topics

Name Message Type Description

hardware_status niryo_robot_msgs/HardwareStatus Motors, bus, joints and CPU status

software_version niryo_robot_msgs/SoftwareVersion
Software version of the Raspberry PI and every hardware components (motors, end effector, conveyors and

tools)

Services

Hardware Interface Package Services

Name Message Type Description

launch_motors_report Trigger Starts motors report

reboot_motors Trigger Reboots motors

stop_motors_report Trigger Stops motors report

Joints Interface

This package handles packages related to the robot’s joints controller.

It provides an interface to ros_control.

Joints interface node

It is instantiated in Niryo Robot Hardware Interface (index.html#document-source/stack/low_level/niryo_robot_hardware_interface) package.

It has been conceived to:

Interface robot’s motors to joint trajectory controller, from ros_control package.
Create a controller manager, from controller_manager package, that provides the infrastructure to load, unload, start and stop controllers.
Interface with motors calibration.
Initialize motors parameters.

It belongs to the ROS namespace: /joints_interface/ .

Parameters

Joints Interface’s default Parameters

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://wiki.ros.org/ros_control
http://wiki.ros.org/ros_control
http://wiki.ros.org/controller_manager

default.yaml file

Name Description Default value Unit

ros_control_loop_frequency Controls loop frequency. 100 Hz

Joints Interface’s hardware specific Parameters

These parameters are speci;c to the hardware version (Ned, Niryo One or Ned2). This ;le comes in a diBerent version for each hardware version. They are located
in a directory of the hardware version name.

joints_params.yaml file

Name Description Supported Hardware versions

joint_N/id
Joint N (1, 2, 3, 4, 5 or 6) id

Default: -1 (invalid id)
All versions

joint_N/type
Joint N (1, 2, 3, 4, 5 or 6) motor type among: “stepper”, “xl320”, “xl430”, “fakeStepper” or “fakeDxl”

Default: “”
All versions

joint_N/bus
Joint N (1, 2, 3, 4, 5 or 6) bus (“ttl” or “can”)

Default: “”
All versions

calibration_params.yaml file

Name Description Default value Unit Supported Hardware versions

calibration_timeout
Waiting time between 2 commands during

the calibration process.
30 seconds All versions

calibration_file
File path where is saved motors calibration

value.

/home/niryo/niryo_robot_saved_files

/stepper_motor_calibration_offsets.txt
N.A. All versions

stepper_N/id Stepper N (1, 2 or 3) id -1 (invalid id) N.A. All versions

stepper_N/v_start
Stepper N (1, 2 or 3) starting velocity for the

acceleration profile
1 0.01 RPM Ned 2 only

stepper_N/a_1
Stepper N (1, 2 or 3) first acceleration for

the acceleration profile
0 RPM² Ned 2 only

stepper_N/v_1
Stepper N (1, 2 or 3) first velocity for the

acceleration profile
0 0.01 RPM Ned 2 only

stepper_N/a_max
Stepper N (1, 2 or 3) max acceleration for

the acceleration profile
6000 RPM² Ned 2 only

stepper_N/v_max
Stepper N (1, 2 or 3) max velocity for the

acceleration profile
6 0.01 RPM Ned 2 only

stepper_N/d_max
Stepper N (1, 2 or 3) max deceleration for

the acceleration profile
6000 RPM² Ned 2 only

stepper_N/d_1
Stepper N (1, 2 or 3) last deceleration for

the acceleration profile
0 RPM² Ned 2 only

stepper_N/v_stop
Stepper N (1, 2 or 3) stop velocity for the

acceleration profile
2 0.01 RPM Ned 2 only

stepper_N/stall_threshold

Stepper N (1, 2 or 3) stall threshold for

which we detect

the end of the joint course for the

calibration process

0 N.A. Ned 2 only

stepper_N/direction

Stepper N (1, 2 or 3) direction for the

calibration

(1 = same as motor direction, -1 = against

motor direction)

1 N.A. All versions

stepper_N/delay Stepper N (1, 2 or 3) delay 0 milliseconds All versions

dynamixels_params.yaml file

Name Description Unit Supported Hardware versions

dxl_N/offset_position
Dynamixel N (1, 2 or 3) offset position for the zero position

Default: ‘0.0’
Rad All versions

dxl_N/home_position
Dynamixel N (1, 2 or 3) home position

Default: ‘0.0’
Rad All versions

dxl_N/direction
Dynamixel N (1, 2 or 3) direction (1 = ClockWise, -1 = Counter ClockWise)

Default: ‘1’
N.A. All versions

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

dxl_N/limit_position_max
Dynamixel N (1, 2 or 3) maximal position allowed

Default: ‘0.0’
Rad All versions

dxl_N/limit_position_min
Dynamixel N (1, 2 or 3) minimal position allowed

Default: ‘0.0’
Rad All versions

dxl_N/position_P_gain
Dynamixel N (1, 2 or 3) Proportional gain of the position PID controller

Default: ‘0.0’
N.A. All versions

dxl_N/position_I_gain
Dynamixel N (1, 2 or 3) Integral gain of the position PID controller

Default: ‘0.0’
N.A. All versions

dxl_N/position_D_gain
Dynamixel N (1, 2 or 3) Derivative gain of the position PID controller

Default: ‘0.0’
N.A. All versions

dxl_N/velocity_P_gain
Dynamixel N (1, 2 or 3) Proportional gain of the velocity PID controller

Default: ‘0.0’
N.A. All versions

dxl_N/velocity_I_gain
Dynamixel N (1, 2 or 3) Integral gain of the velocity PID controller

Default: ‘0.0’
N.A. All versions

dxl_N/FF1_gain
Dynamixel N (1, 2 or 3) Feed Forward velocity Gain

Default: ‘0.0’
N.A. All versions

dxl_N/FF2_gain
Dynamixel N (1, 2 or 3) Feed Forward acceleration Gain

Default: ‘0.0’
N.A. All versions

dxl_N/acceleration_profile
Dynamixel N (1, 2 or 3) acceleration profile parameter

Default: ‘0.0’
RPM² All versions

dxl_N/velocity_profile
Dynamixel N (1, 2 or 3) velocity profile parameter

Default: ‘0.0’
RPM All versions

Name Description Unit Supported Hardware versions

[*] refers to the dedicated motor reference documentation.

steppers_params.yaml file

Name Description Unit Supported Hardware versions

stepper_N/id
Stepper N (1, 2 or 3) id

Default: -1 (invalid id)
N.A. All versions

stepper_N/gear_ratio
Stepper N (1, 2 or 3) gear ratio

Default: 1
N.A. Ned and One only

stepper_N/max_effort
Stepper N (1, 2 or 3) max effort

Default: 0
N.A. Ned and One only

stepper_N/motor_ratio
Stepper N (1, 2 or 3) motor ratio for conversion into radian

Default: 1
N.A. Ned 2 only

stepper_N/offset_position
Stepper N (1, 2 or 3) offset position to position limit min

Default: 0
Rad All versions

stepper_N/home_position
Stepper N (1, 2 or 3) Home position of the motor

Default: 0
Rad All versions

stepper_N/limit_position_min
Stepper N (1, 2 or 3) position limit min of the motor

Default: 0
Rad All versions

stepper_N/limit_position_max
Stepper N (1, 2 or 3) position limit max of the motor

Default: 0
Rad All versions

stepper_N/direction
Stepper N (1, 2 or 3) assembly direction of the motor (1 = CW, -1 = CCW)

Default: 1
N.A. All versions

stepper_N/v_start
Stepper N (1, 2 or 3) starting velocity for the acceleration profile

Default: 1
RPM Ned 2 only

stepper_N/a_1
Stepper N (1, 2 or 3) first acceleration for the acceleration profile

Default: 0
RPM² Ned 2 only

stepper_N/v_1
Stepper N (1, 2 or 3) first velocity for the acceleration profile

Default: 0
RPM Ned 2 only

stepper_N/a_max
Stepper N (1, 2 or 3) max acceleration for the acceleration profile

Default: 6000
RPM² Ned 2 only

stepper_N/v_max
Stepper N (1, 2 or 3) max velocity for the acceleration profile

Default: 6
RPM Ned 2 only

stepper_N/d_max
Stepper N (1, 2 or 3) max deceleration for the acceleration profile

Default: 6000
RPM² Ned 2 only

[*]

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#what-is-the-profile

stepper_N/d_1
Stepper N (1, 2 or 3) last deceleration for the acceleration profile

Default: 0
RPM² Ned 2 only

stepper_N/v_stop
Stepper N (1, 2 or 3) stop velocity for the acceleration profile

Default: 2
RPM Ned 2 only

stepper_N/stall_threshold
Stepper N (1, 2 or 3) stall threshold for which we detect the end of the joint course

Default:
N.A. Ned 2 only

Name Description Unit Supported Hardware versions

The velocity pro;les for the Stepper motors (in calibration_params.yaml and steppers_params.yaml ;les) can be de;ned for TTL bus only (thus for Ned2 only). They
are defined according to the following graph:

Dependencies

hardware_interface
controller_manager
TTL Driver
CAN Driver
Niryo_robot_msgs
control_msgs

Services, Topics and Messages

Subscribed topics

Joints Interface’s Published Topics

Name Message Type Description

niryo_robot_follow_joint_trajectory_controller/follow_joint_trajectory/result
:control_actions:`control_msgs/FollowJointTrajectory

Action<FollowJointTrajectory>`

Trajectory
results from

controller

Published topics

Joints Interface’s Published Topics

Name Message Type Description

/niryo_robot/learning_mode/state std_msgs/Bool Learning mode state

Services

Joints Interface Package Services

Name Message Type Description

/niryo_robot/joints_interface/calibrate_motors SetInt Starts motors calibration - value can be 1 for auto calibration, 2 for manual

/niryo_robot/joints_interface/request_new_calibration Trigger
Resets motor calibration state to “uncalibrated”. This will allow the user to

ask a new calibration.

niryo_robot/learning_mode/activate Trigger
Changes learning mode (Free Motion) state. When learning mode is

activated, torques are disabled and the joints can move freely.

niryo_robot/joints_interface/steppers_reset_controller Trigger Resets the controller

Errors and warning messages

List of Errors and warning messages

Type Message Description

Error JointHardwareInterface::init - Fail to add joint, return : The joint is not correctly initialized

Error JointHardwareInterface::init - stepper state init failed The stepper state parameters are not correctly retrieved

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/steppers_velocity_profiles.png
http://wiki.ros.org/hardware_interface
http://wiki.ros.org/controller_manager
http://docs.ros.org/melodic/api/control_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html

Error JointHardwareInterface::init - dxl state init failed The dynamixel state parameters are not correctly retrieved

Error
JointHardwareInterface::init - Dynamixel motors are not available on CAN

Bus
The robot wrongly tries to initialize a dynamixel motor for the CAN bus (works only on

TTL)

Error JointHardwareInterface::init - Fail to reboot motor id The motor failed to reboot. Try rebooting it again

WARNING
JointHardwareInterface::init - initialize stepper joint failure, return %d.

Retrying
Failed to initialize a stepper. Will try again up to 3 times

WARNING JointHardwareInterface::init - add stepper joint failure, return %d. Retrying Failed to add a stepper joint. Will try again up to 3 times

WARNING JointHardwareInterface::init - init dxl joint failure, return : %d. Retrying Failed to initialize a dynamixel joint. Will try again up to 3 times

WARNING JointHardwareInterface::init - add dxl joint failure, return : %d. Retrying Failed to add a dynamixel joint. Will try again up to 3 times

Type Message Description

Conveyor Interface

This package handles Niryo’s Conveyors.

It allows you to control up to two Conveyors at the same time.

Two version of the conveyor exist: The Conveyor Belt, communicating via a CAN bus, and the Conveyor Belt (V2), communicating via a TTL bus. Both of them are
directly compatible for the Ned and One. For Ned2, you will need to change the stepper card of the CAN Conveyor Belt to be able to use it on a TTL port (there is no
CAN port on Ned2).

Conveyor Interface node (For development and debugging purpose only)

This ROS Node has been conceived to:

Use the correct low level driver according to the hardware version of the robot.
Initialize the Conveyor Interface.

Conveyor Interface core

It is instantiated in Niryo Robot Hardware Interface (index.html#document-source/stack/low_level/niryo_robot_hardware_interface) package.

It has been conceived to:

Interface itself with low level drivers (CAN or TTL for Ned and Niryo One, TTL only for Ned2)
Initialize conveyor motors parameters.
Handle the requests from services to set, control or remove the conveyors.
Publish conveyor states.

It belongs to the ROS namespace: /niryo_robot/conveyor/ .

Parameters

Conveyor Interface’s Parameters

Name Description

publish_frequency
Publishing rate for conveyors state.

Default: ‘2.0’

type
Type of the motor used.

Default: ‘Stepper’

protocol
Protocol of the communication.

It can be ‘CAN’ (for Ned or One) or ‘TTL’ (for Ned or One or Ned 2)

default_id Default id of the conveyor before the connection.

Pool_id_list Id of the conveyor after the connection.

Direction Direction of the conveyor.

max_effort (CAN Only)
Max effort used by the steppers

Default: ‘90’

micro_steps (CAN only)
Micro steps used by the Steppers

Default: ‘8’

Published topics - Conveyor interface

Conveyor Interface’s Published Topics

Name Message Type Description

feedback ConveyorFeedbackArray Conveyors states

Services

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Conveyor Interface Package Services

Name Message Type Description

control_conveyor ControlConveyor Sends a command to the desired Conveyor

ping_and_set_conveyor SetConveyor Scans and sets a new Conveyor or removes a connected Conveyor

Dependencies - Conveyor interface

std_msgs
CAN Driver
TTL Driver

Services & messages files - Conveyor interface

ControlConveyor (Service)

uint8 id

bool control_on
int16 speed
int8 direction

int16 status
string message

SetConveyor (Service)

uint8 cmd
uint8 id

uint8 ADD = 1
uint8 REMOVE = 2

int16 id
int16 status
string message

ConveyorFeedbackArray (Message)

conveyor_interface/ConveyorFeedback[] conveyors

ConveyorFeedback (Message)

#Conveyor id (either 12 or 18)
uint8 conveyor_id
#Conveyor Connection state (if it is enabled)
bool connection_state
Conveyor Controls state : ON or OFF
bool running
Conveyor Speed (1-> 100 %)
int16 speed
Conveyor direction (backward or forward)
int8 direction

Tools Interface

This package handles Niryo’s tools.

Tools interface node (For Development and Debugging)

The ROS Node is made to:

Initialize Tool Interface with configuration parameters.
Start ROS stuffs like services, topics.

Tools Interface Core

It is instantiated in Niryo Robot Hardware Interface (index.html#document-source/stack/low_level/niryo_robot_hardware_interface) package.

It has been conceived to:

Initialize the Tool Interface.
Provide services for setting and controlling tools.
Publish tool connection state.

It belongs to the ROS namespace: /tools_interface/ .

Tool Interface’s default Parameters

default.yaml

Name Description

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html

check_tool_connection_frequency

The frequency where tool interface check and publish the state of the tool connected,

or remove tool if it is disconnected.

Default: ‘2.0’

Name Description

Tool Interface’s hardware specific Parameters

These parameters are speci;c to the hardware version (Ned, One or Ned2). This ;le comes in a diBerent version for each hardware version, located in a directory of
the hardware version name.

tools_params.yaml

Name Description Supported Hardware versions

id_list
List of default IDs of each tool supported by Niryo

Default: ‘[11,12,13,30,31]’
All Versions

type_list

List of motor tools type

Default: ‘xl320’ for NED and ONE

Default: ‘xl330’ for NED2

Default: ‘fakeDxl’ for simulation

All Versions

name_list
List of tools’s name corresponds to ID list and type list above

Default: ‘[“Standard Gripper”, “Large Gripper”, “Adaptive Gripper”, “Vacuum Pump”, “Electromagnet”]’
All Versions

Dependencies

std_msgs
std_srvs
TTL Driver
Common

Services, Topics and Messages

Published topics

Tools Interface’s Published Topics

Name Message Type Description

/niryo_robot_hardware/tools/current_id std_msgs/Int32 Current tool ID

Services

Tool Interface Package Services

Name Message Type Description

niryo_robot/tools/ping_and_set_dxl_tool tools_interface/PingDxlTool Scans and sets for a tool plugged

niryo_robot/tools/open_gripper tools_interface/OpenGripper Opens the gripper

niryo_robot/tools/close_gripper tools_interface/OpenGripper Closes the gripper

niryo_robot/tools/pull_air_vacuum_pump tools_interface/OpenGripper Pulls air with the vacuum pump

niryo_robot/tools/push_air_vacuum_pump tools_interface/OpenGripper Pushes air with the vacuum pump

niryo_robot/tools/reboot std_srvs/Trigger Reboots the motor of the equipped tool

PingDxlTool (Service)

int8 state
tools_interface/Tool tool

ToolCommand (Service)

uint8 id

uint16 position
uint16 speed
int16 hold_torque
int16 max_torque

uint8 state

End Effector Interface

This package handles the End Effector Panel of a robot, it is supported from Ned 2.
It provides services and topics specific to the End Effector Panel in order to be used by a final user.

However, it does not deal with the low level bus communication with the components: this is done in the TTL Driver package.

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/std_srvs/html/index-msg.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Int32.html
http://docs.ros.org/melodic/api/std_srvs/html/srv/Trigger.html

End Effector Interface node (For development and debug)

The ROS Node in End Effector Interface Package is used to:

Instantiate a TTL Driver manager to communicate with hardware.
Initialize End Effector Interface.

End Effector Interface Core

It is instantiated in Niryo Robot Hardware Interface (index.html#document-source/stack/low_level/niryo_robot_hardware_interface) package.

It has been conceived to:

Interface with TTL Driver.
Initialize End Effector parameters.
Retrieve End Effector data from TTL driver.
Publish the status of buttons.
Publish the collision detection status.
Start service on IO State.

It belongs to the ROS namespace: /end_effector_interface/ .

Parameters - End Effector Interface

end_effector_interface’s Parameters

Name Description

end_effector_id
Id of the End Effector in TTL bus

Default: 0

check_end_effector_status_frequency
Frequency to get the End Effector from driver

Default: 40.0

button_2__type
Button used to activate the FreeMotion mode

Default: free_drive

button_1__type
Button used to save the actual position of the robot

Default: save_position

button_0__type
Custom Button used by users to do something

Default: custom

hardware_type
Type of the End Effector. It can be end_effector or fake_end_effector

Default: end_effector

Published topics - End Effector Interface

end_effector_interface Package Published Topics

Name Message Type Description

/niryo_robot_hardware_interface/end_effector_interface/_free_drive_button_state_publisher EEButtonStatus Publishes state of Free Motion Button

/niryo_robot_hardware_interface/end_effector_interface/_save_button_state_publisher EEButtonStatus Publishes state of Save Position Button

/niryo_robot_hardware_interface/end_effector_interface/_custom_button_state_publisher EEButtonStatus Publishes state of Custom Button

/niryo_robot_hardware_interface/end_effector_interface/_digital_out_publisher EEIOState Publishes state of IO Digital

Services - End Effector Interface

end_effector_interface Package Services

Name Service Type Description

set_ee_io_state SetEEDigitalOut Set up digital output on End Effector

Dependencies - End Effector Interface

std_msgs
TTL Driver
Common

Services & Messages files - End Effector Interface

SetEEDigitalOut (Service)

bool data

bool state

EEButtonStatus (Message)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html

uint8 HANDLE_HELD_ACTION=0
uint8 LONG_PUSH_ACTION=1
uint8 SINGLE_PUSH_ACTION=2
uint8 DOUBLE_PUSH_ACTION=3
uint8 NO_ACTION=100

uint8 action

EEIOState (Message)

bool digital_input
bool digital_output

CPU Interface

This package provides an interface for CPU temperature monitoring.

CPU Interface Node (For development and debugging purpose only)

This ROS Node has been conceived to launch the CPU interface in an isolated way.

CPU Interface Core

It is instantiated in Niryo Robot Hardware Interface (index.html#document-source/stack/low_level/niryo_robot_hardware_interface) package.

It has been made to monitor CPU temperature of the Raspberry Pi and automatically shutdown the Raspberry Pi if it reaches a critical threshold. Two thresholds
can be defined via parameters: a warning threshold and a shutdown threshold.

The CPU temperature is read from the Ubuntu system file /sys/class/thermal/thermal_zone0/temp.

In simulation, the CPU temperature of the computer running the simulation is used, but the threshold are deactivated (no shutdown in case of high temperature).

It belongs to the ROS namespace: /cpu_interface/ .

Parameters

CPU Interface’s Parameters

Name Description

read_rpi_diagnostics_frequency
Publishes rate for CPU temperature

Default: ‘0.25’

temperature_warn_threshold
CPU temperature [celsius] threshold before a warn message

Default: ‘75’

temperature_shutdown_threshold
CPU temperature [celsius] threshold before shutdown the robot

Default: ‘85’

Dependencies

Common

Services, Topics and Messages

None

Common

The Common package defines the common software components of the low level stack. It is split into a model part and a utility part:
- The ‘model’ subpackage defines the model tree needed to keep a virtual state of the robot up to date at any time.
- The ‘util’ subpackage defines cpp interfaces and useful functions

Model

The model subpackage is comprised of:

States

Classes, to represent the virtual state of each hardware component at any moment. The hierarchy allows powerful polymorphism so that we can interpret each
component differently based on the information we need to obtain.

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Abstract Hardware State inheritance graph

Enums

Enhanced enums, to keep trace of various enumeration and be able to have useful utilities attached to them (like conversion in string).

Hardware Type Enum inheritance graph

Commands

Classes representing single and synchronize commands, for steppers and dynamixels. They are needed in queues in the ttl_driver and can_driver packages.

Commands graphs

Single Cmd Sync Cmd

Each type of command is an alias to specified versions of two base template classes: AbstractSynchronizeMotorCmd and AbstractSingleMotorCmd

Util

The util subpackage is comprised of:

Cpp interfaces, used globally in the stack for polymorphism for instance
Utility functions usable globally in the stack

Dependencies

This package does not depend on any package. This package is a dependency of the following packages:

can_driver
conveyor_interface
cpu_interface
end_effector_interface
joints_interface
niryo_robot_hardware_interface
tools_interface
ttl_driver

TTL Driver

This package handles motors which communicate via the protocol TTL.

This package is based on the DXL SDK. It provides an interface to dynamixel_sdk.

TTL Driver Node (For only the development and debugging propose)

The ROS Node is made to:

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/classcommon_1_1model_1_1AbstractHardwareState__inherit__graph.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/classcommon_1_1model_1_1HardwareTypeEnum__inherit__graph.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/classcommon_1_1model_1_1ISingleMotorCmd__inherit__graph.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/classcommon_1_1model_1_1ISynchronizeMotorCmd__inherit__graph.png
http://wiki.ros.org/dynamixel_sdk

Initialize TTL Interface.
Get configuration of motors and add to TTL Interface.

TTL Interface Core

It is instantiated in Niryo Robot Hardware Interface (index.html#document-source/stack/low_level/niryo_robot_hardware_interface) package.

It has been conceived to:

Initialize the TTL Interface (Interface used by other packages) and physical bus with the configurations.
Add, remove and monitor devices.
Start getting data and sending data on the physical bus.
Start ROS stuffs like services, topics.

It belongs to the ROS namespace: /niryo_robot/ttl_driver/ .

Parameters - TTL Driver

 Note

These con;guration parameters are chosen and tested many times to work correctly. Please make sure that you understand what you do before editing these
files.

TTL Driver’s Parameters

Name Description

ttl_hardware_control_loop_frequency
Frequency of the bus control loop.

Default: ‘240.0’

ttl_hardware_write_frequency
Writes frequency on the bus.

Default: ‘120.0’

ttl_hardware_read_data_frequency
Reads frequency on the bus.

Default: ‘120.0’

ttl_hardware_read_status_frequency
Reads frequency for device status on the bus.

Default: ‘0.7’

ttl_hardware_read_end_effector_frequency
Read frequency for End Effector’s status.

Default: ‘13.0’

bus_params/Baudrate
Baudrates of TTL bus

Default: ‘1000000’

bus_params/uart_device_name
Name of UART port using

Default: ‘/dev/ttyAMA0’

Dependencies - TTL Driver

dynamixel_sdk
Niryo_robot_msgs
Common
std_msgs

Services - TTL Driver

TTL Driver Package Services

Name Message Type Description

niryo_robot/ttl_driver/set_dxl_leds SetInt Controls dynamixel LED

niryo_robot/ttl_driver/send_custom_value SendCustomValue Writes data at a custom register address of a given TTL device

niryo_robot/ttl_driver/read_custom_value ReadCustomValue Reads data at a custom register address of a given TTL device

niryo_robot/ttl_driver/read_pid_value ReadPIDValue Reads the PID of dxl motors

niryo_robot/ttl_driver/write_pid_value WritePIDValue Writes the PID for dxl motors

niryo_robot/ttl_driver/read_velocity_profile ReadVelocityProfile Reads velocity Profile for steppers

niryo_robot/ttl_driver/write_velocity_profile WriteVelocityProfile Writes velocity Profile for steppers

Services & Messages files - TTL Driver

SendCustomValue (Service)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://wiki.ros.org/dynamixel_sdk
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html

Check XL-320 and XL-430 reference doc for
the complete register table

uint8 id
int32 value
int32 reg_address
int32 byte_number

int32 status
string message

ReadCustomValue (Service)

Check XL-320 and XL-430 reference doc for
the complete register table

uint8 id
int32 reg_address
int32 byte_number

int32 value
int32 status
string message

ReadPIDValue (Service)

Check XL-XXX motors reference doc for
the complete register table

uint8 id

uint16 pos_p_gain
uint16 pos_i_gain
uint16 pos_d_gain

uint16 vel_p_gain
uint16 vel_i_gain

uint16 ff1_gain
uint16 ff2_gain

int32 status
string message

WritePIDValue (Service)

Check XL-XXX motors reference doc for
the complete register table

uint8 id

uint16 pos_p_gain
uint16 pos_i_gain
uint16 pos_d_gain

uint16 vel_p_gain
uint16 vel_i_gain

uint16 ff1_gain
uint16 ff2_gain

int32 status
string message

ReadVelocityProfile (Service)

Check stepper ttl reference doc for
the complete register table

uint8 id

float64 v_start

float64 a_1
float64 v_1

float64 a_max
float64 v_max
float64 d_max

float64 d_1

float64 v_stop

int32 status
string message

WriteVelocityProfile (Service)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Check stepper ttl reference doc for
the complete register table

uint8 id

float64 v_start

float64 a_1
float64 v_1

float64 a_max
float64 v_max
float64 d_max

float64 d_1

float64 v_stop

int32 status
string message

MotorHardwareStatus (Message)

niryo_robot_msgs/MotorHeader motor_identity

string firmware_version
uint32 temperature
float64 voltage
uint32 error
string error_msg

MotorCommand (Message)

uint8 cmd_type
uint8 CMD_TYPE_POSITION=1
uint8 CMD_TYPE_VELOCITY=2
uint8 CMD_TYPE_EFFORT=3
uint8 CMD_TYPE_TORQUE=4

uint8[] motors_id
uint32[] params

ArrayMotorHardwareStatus (Message)

std_msgs/Header header
ttl_driver/MotorHardwareStatus[] motors_hw_status

CAN Driver

This package provides an interface between high level ROS packages and handler of CAN Bus. It uses the mcp_can_rpi for CAN bus communication.

It is used by only Ned and the Niryo One.

CAN Driver Node (For only the development and debugging propose)

The ROS Node is made to:

Initialize CAN Interface.

CAN Interface Core

It is instantiated in Niryo Robot Hardware Interface (index.html#document-source/stack/low_level/niryo_robot_hardware_interface) package.

It has been conceived to:

Initialize the CAN Interface and physical bus with the configurations.
Add, remove and monitor devices on bus.
Start control loop to get and send data from/to motors.
Start ROS stuffs like services, topics if they exist.

It belongs to the ROS namespace: /can_driver/ .

Parameters

 Note

These configuration parameters are set to work with Niryo’s robot. Do not edit them.

CAN Driver’s Parameters

Name Description

can_hardware_control_loop_frequency
Control loop frequency.

Default: ‘1500.0’

can_hw_write_frequency
Write frequency.

Default: ‘200.0’

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

can_hw_read_frequency
Read frequency.

Default: ‘50.0’

bus_params/spi_channel
spi channel.

Default: ‘0’

bus_params/spi_baudrate
Baudrate.

Default: ‘1000000’

bus_params/gpio_can_interrupt
GPIO Interrupt.

Default: ‘25’

Name Description

Dependencies

MCP CAN rpi
Niryo_robot_msgs
Common
std_msgs

Services, Topics and Messages

StepperCmd (Service)

uint8 cmd_type
uint8 CMD_TYPE_SYNCHRONIZE=5
uint8 CMD_TYPE_RELATIVE_MOVE=6
uint8 CMD_TYPE_MAX_EFFORT=7
uint8 CMD_TYPE_MICRO_STEPS=8
uint8 CMD_TYPE_POSITION_OFFSET=9
uint8 CMD_TYPE_CALIBRATION=10

uint8[] motors_id
int32[] params

bool result

StepperMotorHardwareStatus (Message)

niryo_robot_msgs/MotorHeader motor_identity

string firmware_version
int32 temperature
int32 voltage
int32 error

StepperMotorCommand (Message)

uint8 cmd_type
uint8 CMD_TYPE_POSITION=1
uint8 CMD_TYPE_VELOCITY=2
uint8 CMD_TYPE_EFFORT=3
uint8 CMD_TYPE_TORQUE=4

uint8[] motors_id
int32[] params

StepperArrayMotorHardwareStatus (Message)

std_msgs/Header header
can_driver/StepperMotorHardwareStatus[] motors_hw_status

TTL Debug Tools

This package is a debugging package to setup and access directly to all hardware components on the TTL bus. It provides main functions like ping, scan device and
read/write/syncRead/syncWrite operations on devices.

There are two ways to use this package: directly with the compiled binary, or via TTL Driver (index.html#document-source/stack/low_level/ttl_driver) services called
in dedicated scripts.

Ttl debug tool binary

The compiled binary (located in install/lib/ttl_debug_tools/ttl_debug_tools) directly accesses the TTL bus using Dynamixel SDK (index.html#document-
source/stack/third_parties/dynamixel_sdk) third party library. Thus, it cannot be used if the Niryo ROS Stack is already running and you should ;rst stop the robot
stack (sudo service niryo_robot_ros stop)

This tool can be launched via:

rosrun ttl_debug_tools ttl_debug_tools

or

roslaunch ttl_debug_tools ttl_debug_tools

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html

Parameters - Ttl debug tools

–help / -h: Prints help message
–baudrate / -b [Baudrate]: Baudrates (1000000 by default)
–port / -p [Port]: Sets port
–id / -i [ID]: Devices ID (-1 by default)
–ids [IDs]: Lists of devices IDs
–scan: Scans all devices on the bus
–ping: Pings specific ID
–get-register [Addr]: Gets a value from a register, parameters is: register address
–get-registers [Addr]: Gets list of values from multiple devices at a register address, parameters is: register address
–get-size [Size]: Size of data to be read with get-register or get-registers, parameters is: size of data in bytes
–set-register [Addr] [Value] [Size]: Sets a value to a register, parameters are in the order: register address / value / size (in bytes) of the data
–set-registers [Addr] [Values] [Size]: Sets values to a register on multiple devices, parameters are in the order: register address / list of values / size (in bytes) of
the data
–calibrate: Calibrates all steppers on the bus. It is used in Ned2 only

Scripts

In order to use Ttl debug tools to debug an already running ROS stack, it was necessary to develop another tool. To do so, two python scripts have been developped.
They ensure access to the data on the TTL bus via two services implemented in the package TTL Driver (index.html#document-source/stack/low_level/ttl_driver):

read_custom_dxl_value.py : uses service ReadCustomValue to read values from the TTL bus
send_custom_dxl_value : uses service SendCustomValue to write values to the TTL bus

Niryo robot - Send DXL custom value

It uses a ttl_driver service to send data to a register of a device on the TTL bus when the ROS stack is running. This script can be launched via:

rosrun ttl_debug_tools send_custom_dxl_value.py

Parameters - Send custom value

–id [ID]: Device ID
–address [Addr]: Registers address to modify
–value [Value]: Value to store at the register address given
–size [Size]: Size in bytes of the data to write

Niryo robot - Read DXL custom value

It uses a service to read data from a register a device on the TTL bus when the ROS stack is running. This script can be launched via:

rosrun ttl_debug_tools read_custom_dxl_value.py

Parameters - Read custom value

–id [ID]: Device ID
–address [Addr]: Register address to modify
–size [Size]: Size in bytes of the data to read

CAN Debug Tools

This package offers scripts to debug with Hardware and setup CAN devices. It provides some main functions like setting up the CAN bus and dumping data on bus.

Niryo robot - CAN debug tools

It provides service to dump data on CAN bus. This script can be launched via:

rosrun can_debug_tools can_debug_tools

Parameters - CAN debug tools

–help / -h: Prints help message
–baudrate / -b [Baudrate]: Baudrates (1000000 by default)
–channel / -c [Channel]: Sets channel SPI (0 by default)
–gpio / -g: GPIO Interrupts for CAN (25 by default)
–freq / -f: frequency of control loop to check data (100Hz by default)
–dump: runs dump service to dump and shows all data found on bus

When you dump data on CAN bus, the result is a table including:

Number of data’s package
Status of package
Control byte
Data in 8 bytes

Third Parties Packages

In this section, you will have access to all information about each Niryo robot’s ROS hardware stack packages, dedicated to low-level interfaces

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Dynamixel SDK

This package has been forked from the official [dynamixel_sdk] package (https://github.com/ROBOTIS-GIT/DynamixelSDK/).

It has been adapted to work on Ned’s custom Raspberry Pi 4B shield, using the [wiringPi] library (http://wiringpi.com/).

MCP CAN rpi

Raspberry Pi library for MCP2515 module (CAN bus interface) through SPI GPIOs

Forked from [MCP_CAN] library (https://github.com/coryjfowler/MCP_CAN_lib).

The MCP2515 module is a SPI-CAN interface. The MCP_CAN library is using the SPI protocol on Arduino to program and use this module. It has been adapted here
to work with the Raspberry Pi 4 GPIOs, using the SPI functions of the using the [wiringPi] library (http://wiringpi.com/).

—

One of the main diBerence is that we don’t handle SPI Chip Select PIN. This is already done by the wiringPi library, and all PINs for SPI are already prede;ned (spi
channel 0 or 1).

To poll the MCP2515 module (to see if there is any data to read), the _digitalRead_ function of wiringPi is used.

Third Parties ROS packages

ros_core
moveit
ros_control
roscpp
rosdoc_lite
roslint
rostest

Control with Python ROS Wrapper

Python Logo

In order to control Ned more easily than calling each topics & services one by one, a Python ROS Wrapper has been built on top of ROS.

For instance, a script realizing a moveJ via Python ROS Wrapper will look like:

niryo_robot = NiryoRosWrapper()
niryo_robot.move_joints(0.1, -0.2, 0.0, 1.1, -0.5, 0.2)

What this code is doing in a hidden way:

It generates a RobotMove Action Goal and set it as a joint command with the corresponding joints value.
Sends goal to the Commander Action Server.
Waits for the Commander Action Server to set Action as finished.
Checks if action finished with a success.

In this section, we will give some examples on how to use the Python ROS Wrapper to control Ned, as well as a complete documentation of the functions available
in the Ned Python ROS Wrapper.

 Hint

The Python ROS Wrapper forces the user to write his code directly in the robot, or, at least, copy the code on the robot via a terminal command. If you do not
want that, and run code directly from your computer you can use the python Package PyNiryo (index.html#pyniryo).

Before running your programs

The variable PYTHONPATH

The Python interpreter needs to have all used packages in the environment variable PYTHONPATH, to do that, you need to have sourced your ROS environment:

If you are coding directly on your robot, it is made directly in every terminal.
If your are using simulation, be sure to have followed the setup from Ubuntu 18 Installation.

Required piece of code

To run, your program will need some imports & initialization. We give you below the piece of code you must use to make Python ROS Wrapper work:

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://github.com/ROBOTIS-GIT/DynamixelSDK/
http://wiringpi.com/
https://github.com/coryjfowler/MCP_CAN_lib
http://wiringpi.com/
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/python_logo.png

#!/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper')

niryo_robot = NiryoRosWrapper()

-- YOUR CODE HERE --

You have now everything you need to control the robot through its Python ROS Wrapper. To run a script, simply use the command python my_script.py .

Examples: Basics

In this file, two short programs are implemented & commented in order to help you understand the philosophy behind the Python ROS Wrapper.

 Danger

If you are using the real robot, make sure the environment around is clear.

Your first move joint

The following example shows a first use case. It’s a simple MoveJ.

#!/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper')

Connecting to the ROS Wrapper & calibrating if needed
niryo_robot = NiryoRosWrapper()
niryo_robot.calibrate_auto()

Moving joint
niryo_robot.move_joints(0.1, -0.2, 0.0, 1.1, -0.5, 0.2)

Code details - First MoveJ

First of all, we indicate to the shell that we are running a Python Script:

#!/usr/bin/env python

Then, we import the API package to be able to access functions:

from niryo_robot_python_ros_wrapper import *

Then, we install a ROS Node in order to communicate with ROS master:

import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper')

We start a NiryoRosWrapper (index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper) instance:

niryo_robot = NiryoRosWrapper()

Once the connection is done, we calibrate the robot using its calibrate_auto()
(index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper.calibrate_auto) function:

niryo_robot.calibrate_auto()

As the robot is now calibrated, we can do a Move Joints by giving the 6 axis positions in radians! To do so, we use move_joints()
(index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper.move_joints):

niryo_robot.move_joints(0.1, -0.2, 0.0, 1.1, -0.5, 0.2)

Your first pick and place

For our second example, we are going to develop an algorithm of pick and place:

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

#!/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_robot_example_python_ros_wrapper')

Connecting to the ROS Wrapper & calibrating if needed
niryo_robot = NiryoRosWrapper()
niryo_robot.calibrate_auto()

Updating tool
niryo_robot.update_tool()

Opening Gripper/Pushing Air
niryo_robot.release_with_tool()
Going to pick pose
niryo_robot.move_pose(0.2, 0.1, 0.14, 0.0, 1.57, 0)
Picking
niryo_robot.grasp_with_tool()
Moving to place pose
niryo_robot.move_pose(0.2, -0.1, 0.14, 0.0, 1.57, 0)
Placing !
niryo_robot.release_with_tool()

Code details - first pick and place

First of all, we do the imports and start a ROS Node:

#!/usr/bin/env python

from niryo_robot_python_ros_wrapper import *
import rospy

rospy.init_node('niryo_robot_example_python_ros_wrapper')

Then, create a NiryoRosWrapper (index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper) instance & calibrate the robot:

niryo_robot = NiryoRosWrapper()
niryo_robot.calibrate_auto()

Then, we equip the tool with update_tool() (index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper.update_tool)

niryo_robot.update_tool()

Now that our initialization is done, we can open the Gripper (or push air from the Vacuum pump) with release_with_tool()
(index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper.release_with_tool), go to the picking pose via move_pose()
(index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper.move_pose) & then catch an object with grasp_with_tool()
(index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper.grasp_with_tool)!

Opening Gripper/Pushing Air
niryo_robot.release_with_tool()
Going to pick pose
niryo_robot.move_pose(0.2, 0.1, 0.14, 0.0, 1.57, 0)
Picking
niryo_robot.grasp_with_tool()

We now get to the place pose, and place the object.

Moving to place pose
niryo_robot.move_pose(0.2, -0.1, 0.14, 0.0, 1.57, 0)
Placing !
niryo_robot.release_with_tool()

Notes - Basics examples

You may not have fully understood how to move the robot and use tools of Ned and that is totally ;ne because you will ;nd more details on another examples
page!
The important thing to remember from this page is how to import the library & connect to the robot.

Examples: Movement

This document shows how to control Ned in order to make Move Joints & Move Pose.

If you want see more, you can look at API - Joints & Pose (index.html#joints-pose).

 Danger

If you are using the real robot, make sure the environment around is clear.

Joints

To do a moveJ, you should pass 6 Joats: (j1, j2, j3, j4, j5, j6) to the method move_joints()
(index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper.move_joints):

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

#!/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper')

niryo_robot = NiryoRosWrapper()
niryo_robot.move_joints(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

To get joints, we use get_joints() (index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper.get_joints):

joints = niryo_robot.get_joints()
j1, j2, j3, j4, j5, j6 = joints

Pose

To do a moveP, you should pass 6 Joats: (x, y, z, roll, pitch, yaw) to the method move_pose()
(index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper.move_pose).

See on this example:

#!/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper')

niryo_robot = NiryoRosWrapper()
niryo_robot.move_pose(0.25, 0.0, 0.25, 0.0, 0.0, 0.0)

To get pose, we use get_pose() (index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper.get_pose):

x, y, z, roll, pitch, yaw = niryo_robot.get_pose()

Examples: Tool action

This page shows how to control Ned’s tools via the Python ROS Wrapper.

If you want see more, you can look at API - Tools (index.html#tools).

 Danger

If you are using the real robot, make sure the environment around it is clear.

Tool control

Equip tool

In order to use a tool, it should be mechanically plugged to the robot but also connected software wise.

To do that, we should use the function update_tool() (index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper.update_tool) which takes
no argument. It will scan motor connections and set the new tool!

The line to equip a new tool is:

niryo_robot.update_tool()

Grasping

To grasp with any tool, you can use the function: grasp_with_tool()
(index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper.grasp_with_tool). This action corresponds to:

Close gripper for Grippers.
Pull Air for Vacuum pump.
Activate for Electromagnet.

The code to grasp is:

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

#!/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper')

Connecting to the ROS Wrapper & calibrating if needed
niryo_robot = NiryoRosWrapper()
niryo_robot.calibrate_auto()

Updating tool
niryo_robot.update_tool()

Grasping
niryo_robot.grasp_with_tool()

To grasp by specifying parameters:

#!/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper')

Connecting to the ROS Wrapper & calibrating if needed
niryo_robot = NiryoRosWrapper()
niryo_robot.calibrate_auto()

Updating tool
tool_used = ToolID.XXX
niryo_robot.update_tool()

if tool_used in [ToolID.GRIPPER_1, ToolID.GRIPPER_2, ToolID.GRIPPER_3, ToolID.GRIPPER_4]:
 niryo_robot.close_gripper(speed=500)
elif tool_used == ToolID.ELECTROMAGNET_1:
 pin_electromagnet = PinID.XXX
 niryo_robot.setup_electromagnet(pin_electromagnet)
 niryo_robot.activate_electromagnet(pin_electromagnet)
elif tool_used == ToolID.VACUUM_PUMP_1:
 niryo_robot.pull_air_vacuum_pump()

Releasing

To release with any tool, you can use the function: release_with_tool()
(index.html#niryo_robot_python_ros_wrapper.ros_wrapper.NiryoRosWrapper.release_with_tool). This action corresponds to:

Open gripper for Grippers.
Push Air for Vacuum pump.
Deactivate for Electromagnet.

The line to release is:

niryo_robot.release_with_tool()

To release by specifying parameters:

#!/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper')

Connecting to the ROS Wrapper & calibrating if needed
niryo_robot = NiryoRosWrapper()
niryo_robot.calibrate_auto()

Updating tool
tool_used = ToolID.XXX
niryo_robot.update_tool()

if tool_used in [ToolID.GRIPPER_1, ToolID.GRIPPER_2, ToolID.GRIPPER_3, ToolID.GRIPPER_4]:
 niryo_robot.open_gripper(speed=500)
elif tool_used == ToolID.ELECTROMAGNET_1:
 pin_electromagnet = PinID.XXX
 niryo_robot.setup_electromagnet(pin_electromagnet)
 niryo_robot.deactivate_electromagnet(pin_electromagnet)
elif tool_used == ToolID.VACUUM_PUMP_1:
 niryo_robot.push_air_vacuum_pump(tool_used)

Pick & place with tools

There are a plenty of ways to realize a pick and place with the ROS Wrapper. Methods will be presented from the lowest to highest level.

Code used will be:

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Imports
from niryo_robot_python_ros_wrapper import *

gripper_used = ToolID.XXX # Tool used for picking

The pick pose
pick_pose = (0.25, 0., 0.15, 0., 1.57, 0.0)
The Place pose
place_pose = (0., -0.25, 0.1, 0., 1.57, -1.57)

def pick_n_place_version_x(niryo_ned):
 # -- SOME CODE -- #

if __name__ == '__main__':
 niryo_robot = NiryoRosWrapper()
 niryo_robot.calibrate_auto()
 pick_n_place_version_x(niryo_robot)

First solution: the heaviest

Everything is done by hand:

def pick_n_place_version_1(niryo_ned):
 height_offset = 0.05 # Offset according to Z-Axis to go over pick & place poses
 gripper_speed = 400

 # Going Over Object
 niryo_ned.move_pose(pick_pose[0], pick_pose[1], pick_pose[2] + height_offset,
 pick_pose[3], pick_pose[4], pick_pose[5])
 # Opening Gripper
 niryo_ned.open_gripper(gripper_speed)
 # Going to picking place and closing gripper
 niryo_ned.move_pose(pick_pose[0], pick_pose[1], pick_pose[2],
 pick_pose[3], pick_pose[4], pick_pose[5])
 niryo_ned.close_gripper(gripper_speed)

 # Raising
 niryo_ned.move_pose(pick_pose[0], pick_pose[1], pick_pose[2] + height_offset,
 pick_pose[3], pick_pose[4], pick_pose[5])

 # Going Over Place pose
 niryo_ned.move_pose(place_pose[0], place_pose[1], place_pose[2] + height_offset,
 place_pose[3], place_pose[4], place_pose[5])
 # Going to Place pose
 niryo_ned.move_pose(place_pose[0], place_pose[1], place_pose[2],
 place_pose[3], place_pose[4], place_pose[5])
 # Opening Gripper
 niryo_ned.open_gripper(gripper_speed)
 # Raising
 niryo_ned.move_pose(place_pose[0], place_pose[1], place_pose[2] + height_offset,
 place_pose[3], place_pose[4], place_pose[5])

Second solution: pick from pose & place from pose functions

We use predefined functions:

def pick_n_place_version_3(niryo_ned):
 # Pick
 niryo_ned.pick_from_pose(*pick_pose)
 # Place
 niryo_ned.place_from_pose(*place_pose)

Third solution: all in one

We use THE predifined function:

def pick_n_place_version_4(niryo_ned):
 # Pick & Place
 niryo_ned.pick_and_place(pick_pose, place_pose)

Examples: Conveyor Belt

This document shows how to use Ned’s Conveyor Belt.

If you want see more about Ned’s Conveyor Belt functions, you can look at API - Conveyor.

 Note

Imports & initialization are not mentionned, but you should not forget it!

Simple Conveyor Belt control

This short example shows how to connect a Conveyor Belt, activate the connection and launch its motor:

niryo_robot = NiryoRosWrapper()

Activating connexion with conveyor and storing ID
conveyor_id = niryo_robot.set_conveyor()

Running conveyor at 50% of its maximum speed, in Forward direction
niryo_robot.control_conveyor(conveyor_id, True, 100, ConveyorDirection.FORWARD)

Stopping robot motor
niryo_robot.control_conveyor(conveyor_id, True, 0, ConveyorDirection.FORWARD)

Deactivating connexion with conveyor
niryo_robot.unset_conveyor(conveyor_id)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Advanced Conveyor Belt control

This example shows how to do a certain amount of pick & place by using the Conveyor Belt with the infrared sensor:

def run_conveyor(robot, conveyor):
 robot.control_conveyor(conveyor, bool_control_on=True,
 speed=50, direction=ConveyorDirection.FORWARD)

-- Setting variables
sensor_pin_id = PinID.GPIO_1A

catch_nb = 5

The pick pose
pick_pose = [0.25, 0., 0.15, 0., 1.57, 0.0]
The Place pose
place_pose = [0.0, -0.25, 0.1, 0., 1.57, -1.57]

-- MAIN PROGRAM

niryo_robot = NiryoRosWrapper()

Activating connexion with conveyor
conveyor_id = niryo_robot.set_conveyor()

for i in range(catch_nb):
 run_conveyor(niryo_robot, conveyor_id)
 while niryo_robot.digital_read(sensor_pin_id) == PinState.LOW:
 niryo_robot.wait(0.1)

 # Stopping robot motor
 niryo_robot.control_conveyor(conveyor_id, True, 0, ConveyorDirection.FORWARD)
 # Making a pick & place
 niryo_robot.pick_and_place(pick_pose, place_pose)

Deactivating connexion with conveyor
niryo_robot.unset_conveyor(conveyor_id)

Examples: Vision

This document shows how to use Ned’s Vision Set.

If you want see more about Ned’s Vision functions, you can look at API - Vision (index.html#vision).

Beforehand

To realize the following examples, you need to have create a workspace.

As the examples always start the same way, there is the code you need to add at the beginning of all of them:

#!/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper')

niryo_robot = NiryoRosWrapper()

- Constants
workspace_name = "workspace_1" # Robot's Workspace Name

The observation pose
observation_pose = (0.18, 0., 0.35, 0., 1.57, -0.2)
The Place pose
place_pose = (0., -0.25, 0.1, 0., 1.57, -1.57)

- Main Program
Calibrate robot if robot needs calibration
niryo_robot.calibrate_auto()
Changing tool
niryo_robot.update_tool()

Simple Vision pick

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

This short example shows how to do your first vision pick:

niryo_robot.move_pose(*observation_pose)
Trying to pick target using camera
ret = niryo_robot.vision_pick(workspace_name,
 height_offset=0.0,
 shape=ObjectShape.ANY,
 color=ObjectColor.ANY)
obj_found, shape_ret, color_ret = ret
if obj_found:
 niryo_robot.place_from_pose(*place_pose)

niryo_robot.set_learning_mode(True)

Examples: Dynamic frames

This document shows how to use dynamic frames.

If you want to see more about dynamic frames functions, you can look at API - Dynamic frames (index.html#dynamic-frames)

 Danger

If you are using the real robot, make sure the environment around it is clear.

Simple dynamic frame control

This example shows how to create a frame and do a small pick and place in this frame:

#!/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

gripper_speed = 400

Initializing ROS node
rospy.init_node('niryo_example_python_ros_wrapper')

Connecting to the ROS Wrapper & calibrating if needed
niryo_robot = NiryoRosWrapper()
niryo_robot.calibrate_auto()

Create frame
point_o = [0.15, 0.15, 0]
point_x = [0.25, 0.2, 0]
point_y = [0.2, 0.25, 0]

niryo_robot.save_dynamic_frame_from_points("dynamic_frame", "description", [point_o, point_x, point_y])

Get list of frames
print(niryo_robot.get_saved_dynamic_frame_list())
Check creation of the frame
info = niryo_robot.get_saved_dynamic_frame("dynamic_frame")
print(info)

Pick
#niryo_robot.open_gripper(gripper_speed)
Move to the frame
niryo_robot.move_pose(0, 0, 0, 0, 1.57, 0, "dynamic_frame")
#niryo_robot.close_gripper(gripper_speed)

Move in frame
niryo_robot.move_linear_relative([0, 0, 0.1, 0, 0, 0], "dynamic_frame")
niryo_robot.move_relative([0.1, 0, 0, 0, 0, 0], "dynamic_frame")
niryo_robot.move_linear_relative([0, 0, -0.1, 0, 0, 0], "dynamic_frame")

Place
#niryo_robot.open_gripper(gripper_speed)
niryo_robot.move_linear_relative([0, 0, 0.1, 0, 0, 0], "dynamic_frame")

Home
niryo_robot.move_joints(0, 0.5, -1.25, 0, 0, 0)

Delete frame
niryo_robot.delete_dynamic_frame("dynamic_frame")

Python ROS Wrapper documentation

This file presents the different Functions, Classes & Enums available with the API.

API functions
Enums

API functions

This class allows you to control the robot via internal API. By controlling, we mean:

Moving the robot.
Using Vision.
Controlling Conveyors Belt.
Playing with hardware.

List of functions subsections:

Main purpose functions
Joints & Pose

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Saved poses
Pick & place
Trajectories
Dynamic frames
Tools
Hardware
Conveyor Belt
Vision
Sound
Led Ring
Custom Button

Main purpose functions

Calls service to calibrate motors then waits for its end. If failed, raises NiryoRosWrapperException

Returns: status, message

Return type: (int, str)

Calls service to calibrate motors then waits for its end. If failed, raises NiryoRosWrapperException

Returns: status, message

Return type: (int, str)

Uses /niryo_robot/learning_mode/state topic subscriber to get learning mode status

Returns: True if activate else False

Return type: bool

Calsl service to set_learning_mode according to set_bool. If failed, raises NiryoRosWrapperException

Parameters: set_bool (bool) – True to activate, False to deactivate

Returns: status, message

Return type: (int, str)

Sets relative max velocity (in %)

Parameters: percentage (int) – Percentage of max velocity

Returns: status, message

Return type: (int, str)

Joints & Pose

Uses /joint_states topic to get joints status

Returns: list of joints value

Return type: list[float]

Uses /niryo_robot/robot_state topic to get pose status

Returns: RobotState object (position.x/y/z && rpy.roll/pitch/yaw && orientation.x/y/z/w)

Return type: RobotState

Uses /niryo_robot/robot_state topic to get pose status

Returns: list corresponding to [x, y, z, roll, pitch, yaw]

class NiryoRosWrapper

calibrate_auto()

calibrate_manual()

get_learning_mode()

set_learning_mode(set_bool)

set_arm_max_velocity(percentage)

class NiryoRosWrapper

get_joints()

get_pose()

get_pose_as_list()

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

Return type: list[float]

Executes Move joints action

Parameters: j1 (float) –

j2 (float) –

j3 (float) –

j4 (float) –

j5 (float) –

j6 (float) –

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Moves to Sleep pose which allows the user to activate the learning mode without the risk of the robot hitting something because of gravity

Returns: status, message

Return type: (int, str)

Moves robot end effector pose to a (x, y, z, roll, pitch, yaw) pose, in a particular frame if defined

Parameters: x (float) –

y (float) –

z (float) –

roll (float) –

pitch (float) –

yaw (float) –

frame (str) –

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Executes Shift pose action

Parameters: axis (ShiftPose) – Value of RobotAxis enum corresponding to where the shift happens

value (float) – shift value

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Executes Shift pose action with a linear trajectory

Parameters: axis (ShiftPose) – Value of RobotAxis enum corresponding to where the shift happens

value (float) – shift value

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Moves robot end effector pose to a (x, y, z, roll, pitch, yaw) pose, with a linear trajectory, in a particular frame if defined

Parameters: x (float) –

y (float) –

z (float) –

roll (float) –

pitch (float) –

yaw (float) –

frame (str) –

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

move_joints(j1, j2, j3, j4, j5, j6)

move_to_sleep_pose()

move_pose(x, y, z, roll, pitch, yaw, frame='')

shift_pose(axis, value)

shift_linear_pose(axis, value)

move_linear_pose(x, y, z, roll, pitch, yaw, frame='')

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Turns jog controller On or Off

Parameters: state (bool) – True to turn on, else False

Returns: status, message

Return type: (int, str)

Makes a Jog on joints position

Parameters: shift_values (list[float]) – list corresponding to the shift to be applied to each joint

Returns: status, message

Return type: (int, str)

Makes a Jog on end-effector position

Parameters: shift_values (list[float]) – list corresponding to the shift to be applied to the position

Returns: status, message

Return type: (int, str)

Computes forward kinematics

Parameters: j1 (float) –

j2 (float) –

j3 (float) –

j4 (float) –

j5 (float) –

j6 (float) –

Returns: list corresponding to [x, y, z, roll, pitch, yaw]

Return type: list (https://docs.python.org/3/library/stdtypes.html#list)[float (https://docs.python.org/3/library/functions.html#float)]

Computes inverse kinematics

Parameters: x (float) –

y (float) –

z (float) –

roll (float) –

pitch (float) –

yaw (float) –

Returns: list of joints value

Return type: list (https://docs.python.org/3/library/stdtypes.html#list)[float (https://docs.python.org/3/library/functions.html#float)]

Saved poses

Moves robot end effector pose to a pose saved

Parameters: pose_name (str) –

Returns: status, message

Return type: (int, str)

Gets saved pose from robot intern storage Will raise error if position does not exist

Parameters: pose_name (str) – Pose Name

Returns: x, y, z, roll, pitch, yaw

Return type: tuple[float]

set_jog_use_state(state)

jog_joints_shift(shift_values)

jog_pose_shift(shift_values)

forward_kinematics(j1, j2, j3, j4, j5, j6)

inverse_kinematics(x, y, z, roll, pitch, yaw)

class NiryoRosWrapper

move_pose_saved(pose_name)

get_pose_saved(pose_name)

save_pose(name, x, y, z, roll, pitch, yaw)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

Saves pose in robot’s memory

Parameters: name (str) –

x (float) –

y (float) –

z (float) –

roll (float) –

pitch (float) –

yaw (float) –

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Sends delete command to the pose manager service

Parameters: name (str) –

Returns: status, message

Return type: (int, str)

Asks the pose manager service which positions are available

Parameters: with_desc (bool) – If True it returns the poses descriptions

Returns: list of positions name

Return type: list[str]

Pick & place

Executes a picking from a position. If an error happens during the movement, error will be raised A picking is described as : - going over the object - going
down until height = z - grasping with tool - going back over the object

Parameters: x (float) –

y (float) –

z (float) –

roll (float) –

pitch (float) –

yaw (float) –

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Executes a placing from a position. If an error happens during the movement, error will be raised A placing is described as : - going over the place - going
down until height = z - releasing the object with tool - going back over the place

Parameters: x (float) –

y (float) –

z (float) –

roll (float) –

pitch (float) –

yaw (float) –

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Executes a pick and place. If an error happens during the movement, error will be raised -> Args param is for development purposes

Parameters: pick_pose (list[float]) –

place_pose (list[float]) –

dist_smoothing (float) – Distance from waypoints before smoothing trajectory

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

delete_pose(name)

get_saved_pose_list(with_desc=False)

class NiryoRosWrapper

pick_from_pose(x, y, z, roll, pitch, yaw)

place_from_pose(x, y, z, roll, pitch, yaw)

pick_and_place(pick_pose, place_pose, dist_smoothing=0.0)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Trajectories

Gets saved trajectory from robot intern storage Will raise error if position does not exist

Parameters: trajectory_name (str) –

Raises: NiryoRosWrapperException – If trajectory file doesn’t exist

Returns: list of [x, y, z, qx, qy, qz, qw]

Return type: list[list[float]]

Asks the pose trajectory service which trajectories are available

Returns: list of trajectory name

Return type: list[str]

Executes trajectory from a list of pose

Parameters: list_poses_raw (list[list[float]]) – list of [x, y, z, qx, qy, qz, qw] or list of [x, y, z, roll, pitch, yaw]

dist_smoothing (float) – Distance from waypoints before smoothing trajectory

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Executes trajectory from list of poses and joints

Parameters: list_pose_joints (list[list[float]]) – List of [x,y,z,qx,qy,qz,qw] or list of [x,y,z,roll,pitch,yaw] or a list of [j1,j2,j3,j4,j5,j6]

list_type (list[string]) – List of string ‘pose’ or ‘joint’, or [‘pose’] (if poses only) or [‘joint’] (if joints only). If None, it is assumed there are only poses in the list.

dist_smoothing (float) – Distance from waypoints before smoothing trajectory

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Saves trajectory object and sends it to the trajectory manager service

Parameters: trajectory_name (str) – name which will have the trajectory

trajectory_points (list[trajectory_msgsJointTrajectorypoint]) – list of trajectory_msgs/JointTrajectoryPoint

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Sends delete command to the trajectory manager service

Parameters: trajectory_name (str) – name

Returns: status, message

Return type: (int, str)

Dynamic frames

Create a dynamic frame with 3 poses (origin, x, y)

Parameters: frame_name (str) – name of the frame

description (str) – description of the frame

list_robot_poses (list[list[float]]) – 3 poses needed to create the frame

belong_to_workspace (boolean) – indicate if the frame belong to a workspace

Returns: status, message

class NiryoRosWrapper

get_trajectory_saved(trajectory_name)

get_saved_trajectory_list()

execute_trajectory_from_poses(list_poses_raw, dist_smoothing=0.0)

execute_trajectory_from_poses_and_joints(list_pose_joints, list_type=None, dist_smoothing=0.0)

save_trajectory(trajectory_points, trajectory_name, trajectory_description)

delete_trajectory(trajectory_name)

class NiryoRosWrapper

save_dynamic_frame_from_poses(frame_name, description, list_robot_poses, belong_to_workspace=False)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Create a dynamic frame with 3 points (origin, x, y)

Parameters: frame_name (str) – name of the frame

description (str) – description of the frame

list_points (list[list[float]]) – 3 points needed to create the frame

belong_to_workspace (boolean) – indicate if the frame belong to a workspace

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Modify a dynamic frame

Parameters: frame_name (str) – name of the frame

new_frame_name (str) – new name of the frame

new_description (str) – new description of the frame

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Delete a dynamic frame

Parameters: frame_name (str) – name of the frame to remove

belong_to_workspace (boolean) – indicate if the frame belong to a workspace

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Get name, description and pose of a dynamic frame

Parameters: frame_name (str) – name of the frame

Returns: name, description, position and orientation of a frame

Return type: list[str, str, list[float]]

Get list of saved dynamic frames

Returns: list of dynamic frames name, list of description of dynamic frames

Return type: list[str], list[str]

Move robot end of a offset in a frame

Parameters: offset (list[float]) – list which contains offset of x, y, z, roll, pitch, yaw

frame (str) – name of local frame

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Move robot end of a offset by a linear movement in a frame

Parameters: offset (list[float]) – list which contains offset of x, y, z, roll, pitch, yaw

frame (str) – name of local frame

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Tools

save_dynamic_frame_from_points(frame_name, description, list_points, belong_to_workspace=False)

edit_dynamic_frame(frame_name, new_frame_name, new_description)

delete_dynamic_frame(frame_name, belong_to_workspace=False)

get_saved_dynamic_frame(frame_name)

get_saved_dynamic_frame_list()

move_relative(offset, frame='world')

move_linear_relative(offset, frame='world')

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Uses /niryo_robot_tools_commander/current_id topic to get current tool id

Returns: Tool Id

Return type: ToolID

Calls service niryo_robot_tools_commander/update_tool to update tool

Returns: status, message

Return type: (int, str)

Grasps with the tool linked to tool_id This action corresponds to - Close gripper for Grippers - Pull Air for Vacuum pump - Activate for Electromagnet

Parameters: pin_id (PinID) – [Only required for electromagnet] Pin ID of the electromagnet

Returns: status, message

Return type: (int, str)

Releases with the tool associated to tool_id This action corresponds to - Open gripper for Grippers - Push Air for Vacuum pump - Deactivate for
Electromagnet

Parameters: pin_id (PinID) – [Only required for electromagnet] Pin ID of the electromagnet

Returns: status, message

Return type: (int, str)

Opens gripper with a speed ‘speed’

Parameters: speed (int) – Default -> 500

max_torque_percentage (int) – Default -> 100

hold_torque_percentage (int) – Default -> 20

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Closes gripper with a speed ‘speed’

Parameters: speed (int) – Default -> 500

max_torque_percentage (int) – Default -> 100

hold_torque_percentage (int) – Default -> 20

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Pulls air

Returns: status, message

Return type: (int, str)

Pulls air

Returns: status, message

Return type: (int, str)

Setups electromagnet on pin

Parameters: pin_id (PinID) – Pin ID

class NiryoRosWrapper

get_current_tool_id()

update_tool()

grasp_with_tool(pin_id='')

release_with_tool(pin_id='')

open_gripper(speed=500, max_torque_percentage=100, hold_torque_percentage=20)

close_gripper(speed=500, max_torque_percentage=100, hold_torque_percentage=50)

pull_air_vacuum_pump()

push_air_vacuum_pump()

setup_electromagnet(pin_id)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Returns: status, message

Return type: (int, str)

Activates electromagnet associated to electromagnet_id on pin_id

Parameters: pin_id (PinID) – Pin ID

Returns: status, message

Return type: (int, str)

Deactivates electromagnet associated to electromagnet_id on pin_id

Parameters: pin_id (PinID) – Pin ID

Returns: status, message

Return type: (int, str)

Enables or disables the TCP function (Tool Center Point). If activation is requested, the last recorded TCP value will be applied. The default value depends on
the gripper equipped. If deactivation is requested, the TCP will be coincident with the tool_link

Parameters: enable (Bool) – True to enable, False otherwise.

Returns: status, message

Return type: (int, str)

Activates the TCP function (Tool Center Point) and defines the transformation between the tool_link frame and the TCP frame

Parameters: x (float) –

y (float) –

z (float) –

roll (float) –

pitch (float) –

yaw (float) –

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Resets the TCP (Tool Center Point) transformation. The TCP will be reset according to the tool equipped

Returns: status, message

Return type: (int, str)

Hardware

Sets pin number pin_id to mode pin_mode

Parameters: pin_id (PinID) –

pin_mode (PinMode) –

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Sets pin_id state to pin_state

Parameters: pin_id (Union[PinID, str]) – The name of the pin

digital_state (Union[PinState, bool]) –

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

activate_electromagnet(pin_id)

deactivate_electromagnet(pin_id)

enable_tcp(enable=True)

set_tcp(x, y, z, roll, pitch, yaw)

reset_tcp()

class NiryoRosWrapper

set_pin_mode(pin_id, pin_mode)

digital_write(pin_id, digital_state)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Reads pin number pin_id and returns its state

Parameters: pin_id (Union[PinID, str]) – The name of the pin

Returns: state

Return type: PinState

Gets Digital IO state : Names, modes, states

Returns: Infos contains in a IOsState object (see niryo_robot_msgs)

Return type: IOsState

Gets hardware status : Temperature, Hardware version, motors names & types …

Returns: Infos contains in a HardwareStatus object (see niryo_robot_msgs)

Return type: HardwareStatus

Conveyor Belt

Scans for conveyor on can bus. If conveyor detected, returns the conveyor ID

Raises: NiryoRosWrapperException –

Returns: ID

Return type: ConveyorID

Removes specific conveyor

Parameters: conveyor_id (ConveyorID) – Basically, ConveyorID.ONE or ConveyorID.TWO

Raises: NiryoRosWrapperException –

Returns: status, message

Return type: (int, str)

Controls conveyor associated to conveyor_id. Then stops it if bool_control_on is False, else refreshes it speed and direction

Parameters: conveyor_id (ConveyorID) – ConveyorID.ID_1 or ConveyorID.ID_2

bool_control_on (bool) – True for activate, False for deactivate

speed (int) – target speed

direction (ConveyorDirection) – Target direction

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Vision

Gets last stream image in a compressed format

Returns: string containing a JPEG compressed image

Return type: str

Modifies image brightness

Parameters: brightness_factor (float) – How much to adjust the brightness. 0.5 will give a darkened image, 1 will give the original image while 2 will enhance the

brightness by a factor of 2.

Returns: status, message

digital_read(pin_id)

get_digital_io_state()

get_hardware_status()

class NiryoRosWrapper

set_conveyor()

unset_conveyor(conveyor_id)

control_conveyor(conveyor_id, bool_control_on, speed, direction)

class NiryoRosWrapper

get_compressed_image(with_seq=False)

set_brightness(brightness_factor)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Return type: (int, str)

Modifies image contrast

Parameters: contrast_factor (float) – While a factor of 1 gives original image. Making the factor towards 0 makes the image greyer, while factor>1 increases the contrast

of the image.

Returns: status, message

Return type: (int, str)

Modifies image saturation

Parameters: saturation_factor (float) – How much to adjust the saturation. 0 will give a black and white image, 1 will give the original image while 2 will enhance the

saturation by a factor of 2.

Returns: status, message

Return type: (int, str)

Given a pose (x_rel, y_rel, yaw_rel) relative to a workspace, this function returns the robot pose in which the current tool will be able to pick an object at this
pose. The height_oBset argument (in m) de;nes how high the tool will hover over the workspace. If height_oBset = 0, the tool will nearly touch the
workspace.

Parameters: workspace_name (str) – name of the workspace

height_offset (float) – offset between the workspace and the target height

x_rel (float) –

y_rel (float) –

yaw_rel (float) –

Returns: target_pose

Return type: RobotState

First detects the specified object using the camera and then returns the robot pose in which the object can be picked with the current tool

Parameters: workspace_name (str) – name of the workspace

height_offset (float) – offset between the workspace and the target height

shape (ObjectShape) – shape of the target

color (ObjectColor) – color of the target

Returns: object_found, object_pose, object_shape, object_color

Return type: (bool (https://docs.python.org/3/library/functions.html#bool), RobotState, str (https://docs.python.org/3/library/stdtypes.html#str), str

(https://docs.python.org/3/library/stdtypes.html#str))

Move Joints to observation_joints, then executes a vision pick

Move Pose to observation_pose, then executes a vision pick

Picks the speci;ed object from the workspace. This function has multiple phases: 1. detects object using the camera 2. prepares the current tool for picking
3. approaches the object 4. moves down to the correct picking pose 5. actuates the current tool 6. lifts the object

Parameters: workspace_name (str) – name of the workspace

height_offset (float) – offset between the workspace and the target height

shape (ObjectShape) – shape of the target

color (ObjectColor) – color of the target

Returns: object_found, object_shape, object_color

Return type: (bool (https://docs.python.org/3/library/functions.html#bool), ObjectShape (index.html#niryo_robot_python_ros_wrapper.ros_wrapper_enums.ObjectShape),

ObjectColor (index.html#niryo_robot_python_ros_wrapper.ros_wrapper_enums.ObjectColor))

Same as get_target_pose_from_cam but directly moves to this position

set_contrast(contrast_factor)

set_saturation(saturation_factor)

get_target_pose_from_rel(workspace_name, height_offset, x_rel, y_rel, yaw_rel)

get_target_pose_from_cam(workspace_name, height_offset, shape, color)

vision_pick_w_obs_joints(workspace_name, height_offset, shape, color, observation_joints)

vision_pick_w_obs_pose(workspace_name, height_offset, shape, color, observation_pose_list)

vision_pick(workspace_name, height_offset, shape, color)

move_to_object(workspace, height_offset, shape, color)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Parameters: workspace (str) – name of the workspace

height_offset (float) – offset between the workspace and the target height

shape (ObjectShape) – shape of the target

color (ObjectColor) – color of the target

Returns: object_found, object_shape, object_color

Return type: (bool (https://docs.python.org/3/library/functions.html#bool), ObjectShape (index.html#niryo_robot_python_ros_wrapper.ros_wrapper_enums.ObjectShape),

ObjectColor (index.html#niryo_robot_python_ros_wrapper.ros_wrapper_enums.ObjectColor))

Parameters: workspace_name (str) – name of the workspace

shape (ObjectShape) – shape of the target

color (ObjectColor) – color of the target

Returns: object_found, object_pose, object_shape, object_color

Return type: (bool (https://docs.python.org/3/library/functions.html#bool), RobotState, str (https://docs.python.org/3/library/stdtypes.html#str), str

(https://docs.python.org/3/library/stdtypes.html#str))

Gets calibration object: camera intrinsics, distortions coefficients

Returns: raw camera intrinsics, distortions coefficients

Return type: (list, list)

Saves workspace by giving the poses of the robot to point its 4 corners with the calibration Tip. Corners should be in the good order

Parameters: name (str) – workspace name, max 30 char.

list_poses_raw (list[list]) – list of 4 corners pose

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Saves workspace by giving the poses of its 4 corners in the good order

Parameters: name (str) – workspace name, max 30 char.

list_points_raw (list[list[float]]) – list of 4 corners [x, y, z]

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Calls workspace manager to delete a certain workspace

Parameters: name (str) – workspace name

Returns: status, message

Return type: (int, str)

Gets the 4 workspace poses of the workspace called ‘name’

Parameters: name (str) – workspace name

Returns: List of the 4 workspace poses

Return type: list[list]

Gives the length over width ratio of a certain workspace

Parameters: name (str) – workspace name

Returns: ratio

Return type: float

detect_object(workspace_name, shape, color)

get_camera_intrinsics()

save_workspace_from_poses(name, list_poses_raw)

save_workspace_from_points(name, list_points_raw)

delete_workspace(name)

get_workspace_poses(name)

get_workspace_ratio(name)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Asks the workspace manager service names of the available workspace

Returns: list of workspaces name

Return type: list[str]

Sound

For more function, please refer to: Sound API functions (index.html#sound-api-functions)

Manages sound

Example:

from niryo_robot_python_ros_wrapper.ros_wrapper import *

robot = NiryoRosWrapper()
robot.sound.play(sound.sounds[0])

Returns: SoundRosWrapper API instance

Return type: SoundRosWrapper

Led Ring

For more function, please refer to: Led Ring API functions (index.html#led-ring-api-functions)

Manages the LED ring

Example:

from niryo_robot_python_ros_wrapper.ros_wrapper import *

robot = NiryoRosWrapper()
robot.led_ring.solid(color=[255, 255, 255])

Returns: LedRingRosWrapper API instance

Return type: LedRingRosWrapper

Custom Button

Manages the custom button

Example:

from niryo_robot_python_ros_wrapper.ros_wrapper import *

robot = NiryoRosWrapper()
print(robot.custom_button.state)

Returns: CustomButtonRosWrapper API instance

Return type: CustomButtonRosWrapper

Get the button state from the ButtonAction class

Returns: int value from the ButtonAction class

Return type: int

Button press state

Return type: bool

get_workspace_list(with_desc=False)

class NiryoRosWrapper

sound

class NiryoRosWrapper

led_ring

class NiryoRosWrapper

custom_button

class CustomButtonRosWrapper(hardware_version='ned2')

state

is_pressed()

wait_for_action(action, timeout=0)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Waits until a specific action occurs and returns true. Returns false if the timeout is reached.

Parameters: action (int) – int value from the ButtonAction class

Returns: True if the action has occurred, false otherwise

Return type: bool

Returns the detected action. Returns ButtonAction.NO_ACTION if the timeout is reached without action.

Returns: Returns the detected action, or ButtonAction.NO_ACTION if the timeout is reached without any action.

Return type: int

Waits for the button to be pressed and returns the press time. Returns 0 if no press is detected after the timeout duration.

Return type: float

Enums

Tools IDs (need to match tools ids in niryo_robot_tools_commander package)

Pin Mode is either OUTPUT or INPUT

Pin State is either LOW or HIGH

Pins ID

wait_for_any_action(timeout=0)

get_and_wait_press_duration(timeout=0)

class ShiftPose

AXIS_X= 0

AXIS_Y= 1

AXIS_Z= 2

ROT_ROLL= 3

ROT_PITCH= 4

ROT_YAW= 5

class ToolID

NONE= 0

GRIPPER_1= 11

GRIPPER_2= 12

GRIPPER_3= 13

GRIPPER_4= 14

ELECTROMAGNET_1= 30

VACUUM_PUMP_1= 31

class PinMode

OUTPUT= 0

INPUT= 1

class PinState

LOW= False

HIGH= True

class PinID

GPIO_1A= '1A'

GPIO_1B= '1B'

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

ConveyorID to be able to have CAN (id 12 and 13) and TTL (id 9 and 10) conveyor in any possible combination

ID_1 = 12 # One, Ned ID_2 = 13 # One, Ned ID_3 = 9 # Ned2 ID_4 = 10 # Ned2

ConveyorID to control conveyors with CAN interface

ConveyorID to control conveyors with TTL interface

GPIO_1C= '1C'

GPIO_2A= '2A'

GPIO_2B= '2B'

GPIO_2C= '2C'

SW_1= 'SW1'

SW_2= 'SW2'

DO1= 'DO1'

DO2= 'DO2'

DO3= 'DO3'

DO4= 'DO4'

DI1= 'DI1'

DI2= 'DI2'

DI3= 'DI3'

DI4= 'DI4'

DI5= 'DI5'

AI1= 'AI1'

AI2= 'AI2'

AO1= 'AO1'

AO2= 'AO2'

class ConveyorID

NONE= 0

ID_1= -1

ID_2= -2

class ConveyorCan

NONE= 0

ID_1= 12

ID_2= 13

class ConveyorTTL

NONE= 0

ID_1= 9

ID_2= 10

class ConveyorDirection

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Modbus

In this document, we will focus on the Modbus/TCP server.

Ned is permanently running a Modbus TCP Server that enables Ned to communicate with a PLC, or another computer in the same network.

The Modbus/TCP server is running on port 5020 by default. It has been built on top of the pymodbus (https://pymodbus.readthedocs.io/en/latest/index.html)
library. This enables you to make Ned communicates with a PLC, or another computer on the same network.

Modbus Python library installation

To use the Modbus Python library, your workspace must have a Python interpreter with Python 3 (3.6 or greater) or Python 2 (2.7 or greater).

 Note

FORWARD= 1

BACKWARD= -1

class ObjectColor

RED= 'RED'

GREEN= 'GREEN'

BLUE= 'BLUE'

ANY= 'ANY'

class ObjectShape

CIRCLE= 'CIRCLE'

SQUARE= 'SQUARE'

ANY= 'ANY'

class ProgramLanguage

NONE= -1

ALL= 0

PYTHON2= 1

PYTHON3= 2

BLOCKLY= 66

class AutorunMode

DISABLE= 0

ONE_SHOT= 1

LOOP= 2

class ButtonAction

HANDLE_HELD_ACTION= 0

LONG_PUSH_ACTION= 1

SINGLE_PUSH_ACTION= 2

DOUBLE_PUSH_ACTION= 3

NO_ACTION= 100

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://pymodbus.readthedocs.io/en/latest/index.html

 Note

Download Python on the o_cial Python website (https://www.python.org/) and ;nd more information about the installation on this website
(https://realpython.com/installing-python/).

This installation requires the use of pip (https://pypi.org/project/pip/), the package manager included in Python.

Start with the installation of numpy:

pip install numpy

To use the Modbus API, you also need to install Modbus python library pymodbus (https://pymodbus.readthedocs.io/en/latest/index.html):

pip install pymodbus

 Attention

Pip can require administrator authorizations to install packages. In this case, add

sudo

before your command lines on Linux.

If pip is not automatically installed with Python, please visit the following website: pip installation (https://pypi.org/project/pip/).

Use the Modbus TCP server

In this document, we will focus on the Modbus/TCP server.

Ned is permanently running a Modbus TCP Server that enables Ned to communicate with a PLC, or another computer in the same network.

The Modbus/TCP server is running on port 5020 by default. It has been built on top of the pymodbus (https://pymodbus.readthedocs.io/en/latest/index.html)
library. This enables you to make Ned communicates with a PLC, or another computer on the same network.

Introduction

All 4 Modbus datastores are implemented: Coils, Discrete inputs, Holding registers, Input registers. Each datastore has a diBerent set of functionalities. Note that
each datastore contains a completely different set of data.

Discrete Input and Input register are READ-ONLY tables. Those have been used to keep the robot state.

Coil and Holding Register are READ/WRITE tables. Those have been used to give user commands to the robot. Hence, those 2 tables do not contain the robot state,
but the last given command.

Address tables start at 0.

Coils

Each address contains a 1bit value.

READ/WRITE (the stored values correspond to the last given command, not the current robot state)

Accepted Modbus functions:

0x01: READ_COILS
0x05: WRITE_SINGLE_COIL

This datastore can be used to set Digital I/O mode and state. Digital I/O numbers used for Modbus:

Digital IO addresses offset table

Address offset Niryo One / Ned digital IO Ned2 digital IO

0 1A DI1

1 1B DI2

2 1C DI3

3 2A DI4

4 2B DI5

5 2C D01

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://www.python.org/
https://realpython.com/installing-python/
https://pypi.org/project/pip/
https://pymodbus.readthedocs.io/en/latest/index.html
https://pypi.org/project/pip/
https://pymodbus.readthedocs.io/en/latest/index.html

6 SW1 D02

7 SW2 D03

8 D04

Address offset Niryo One / Ned digital IO Ned2 digital IO

Address Description

0-8 Digital I/O mode (Input = 1, Output = 0)

100-108 Digital I/O state (High = 1, Low = 0)

200-299 Can be used to store your own variables

Discrete inputs

Each address contains a 1bit value.

READ-ONLY

Accepted Modbus functions:

0x02: READ_DISCRETE_INPUTS

This datastore can be used to read Digital I/O mode and state. See the Coils section above for digital I/O number mapping.

Address Description

0-8 Digital I/O mode (Input = 1, Output = 0)

100-108 Digital I/O state (High = 1, Low = 0)

Holding registers

Each address contains a 16bit value.

READ/WRITE (the stored values correspond to the last given command, not the current robot state)

Accepted Modbus functions:

0x03: READ_HOLDING_REGISTERS
0x06: WRITE_SINGLE_REGISTER

Address Description

0-5 Joints (mrad)

10-12 Position x,y,z (mm)

13-15 Orientation roll, pitch, yaw (mrad)

100 Sends Joint Move command with stored joints

101 Sends Pose Move command with stored position and orientation

102 Sends Linear Pose Move command with stored position and orientation

110 Stops current command execution

150 Is executing command flag

151 Last command result*

152 Last command data result (if not vision related)

153 - 158 Vision - Target pose result

159 Vision - Shape of the object found (-1: ANY, 1: CIRCLE, 2: SQUARE, 3: TRIANGLE, 0: NONE)

160 Vision - Color of the object found (-1: ANY, 1: BLUE, 2: RED, 3: GREEN, 0: NONE)

200-299 Can be used to store your own variables

300 Learning Mode (On = 1, Off = 0)

301 Joystick Enabled (On = 1, Off = 0)

310 Requests new calibration

311 Starts auto calibration

312 Starts manual calibration

401 Gripper open speed (100-1000)

402 Gripper close speed (100-1000)

500 Updates the tool id according to the gripper plugged (gripper 1: 11, gripper 2: 12, gripper 3: 13, vaccum pump: 31)

501 Stores the tool id

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

510 Opens gripper previously updated

511 Closes gripper previously updated

512 Pulls air vacuum pump with id 31

513 Pushes air vacuum pump with id 31

520 Updates the conveyor id and enable it

521 Detaches or disables the conveyor previously enabled and updated

522 Starts the conveyor previously enabled and updated

523 Sets the conveyor direction (backward = number_to_raw_data(-1), forward = 1)

524 Sets the conveyor speed (0-100)(%)

525 Stores the conveyor id

526 Stops conveyor previously enabled and updated

600 TCP - Enables or disables the TCP function (Tool Center Point).

601 Activates the TCP function (Tool Center Point) and defines the transformation between the tool_link frame and the TCP frame.

610 Vision - Gets target pose from relative pose, with stored relative pose and height_offset

611 Vision - Gets target pose from camera, with stored workspace name, height offset, shape and color

612 Vision - Vision pick, with stored workspace name, height offset, shape and color

613 Vision - Moves to object, with stored workspace name, height offset, shape and color

614 Vision - Detects object, with stored workspace name, shape and color

620 Vision - Stores workspace’s height offset

621 Vision - Stores relative pose x_rel

622 Vision - Stores relative pose y_rel

623 Vision - Stores relative pose yaw_rel

624 Vision - Stores requested shape (-1: ANY, 1: CIRCLE, 2: SQUARE, 3: TRIANGLE)

625 Vision - Stores requested color (-1: ANY, 1: BLUE, 2: RED, 3: GREEN)

626 - max 641 Vision - Stores workspace’s name, as a string encoded in 16 bits hex (see examples on how to store a workspace name from a client)

650 Set Analog IO - Arg: [Analog IO number, voltage 0V- 5000mV]

Address Description

‘*’ The “Last command result” gives you more information about the last executed command:

0: no result yet
1: success
2: command was rejected (invalid params, …)
3: command was aborted
4: command was canceled
5: command had an unexpected error
6: command timeout
7: internal error

Input registers

Each address contains a 16bit value.

READ-ONLY.

Accepted Modbus functions:

0x04: READ_INPUT_REGISTERS

Address Description

0-5 Joints (mrad)

10-12 Position x,y,z (mm)

13-15 Orientation roll, pitch, yaw (mrad)

200 Selected tool ID (0 for no tool)

300 Learning Mode activated

400 Motors connection up (Ok = 1, Not ok = 0)

401 Calibration needed flag

402 Calibration in progress flag

403 Raspberry Pi temperature

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

404 Raspberry Pi available disk size

405 Raspberry Pi ROS log size

406 Ned RPI image version n.1

407 Ned RPI image version n.2

408 Ned RPI image version n.3

409 Hardware version (1 or 2)

530 Conveyor 1 connection state (Connected = 1 , Not connected = 0)

531 Conveyor 1 control status (On = 0, Off = 1)

532 Conveyor 1 Speed (0-100 (%))

533 Conveyor 1 direction (Backward = -1, Forward = 1)

540 Conveyor 2 connection state (Connected = 1 , Not connected = 0)

541 Conveyor 2 control status (On = 0, Off = 1)

542 Conveyor 2 Speed (0-100 (%))

543 Conveyor 2 direction (Backward = -1, Forward = 1)

600 - 604 Analog IO mode

610 - 614 Analog IO state in mV

Address Description

Analog IO addresses offset table

Address offset Niryo One / Ned analog IO Ned2 analog IO

0 / AI1

1 / AI2

2 / AO1

3 / AO2

Dependencies - Modbus TCP Server

pymodbus library
Niryo_robot_msgs
std_msgs

Modbus Examples

Examples of Modbus python lib can be found here Python Modbus examples
(https://github.com/NiryoRobotics/ned_ros/tree/master/niryo_robot_modbus/examples/). In the examples folder, you can ;nd several example scripts that control
Ned. These scripts are commented to help you understand every step.

Client Modbus Test

Calls several functions on the IO of Ned.

Client Move Command

This script shows the calibration and Ned’s moves.

Client Modbus Conveyor Example

This script shows how to activate the Conveyor Belt through the Modbus Python API, set a direction, a speed, and start and stop the device.

Client Modbus Vision Example

This script shows how to use the vision pick method from a Modbus Client, through the Modbus Python API. Ned picks a red object seen in its workspace and
releases it on its left. Note that we use the string_to_register method to convert a string into an object storable in registers.

#!/usr/bin/env python

from pymodbus.client.sync import ModbusTcpClient
from pymodbus.payload import BinaryPayloadBuilder, BinaryPayloadDecoder
import time
from enum import Enum, unique

Enums for shape and color. Those enums are the one used by the modbus server to receive requests
@unique
class ColorEnum(Enum):
 ANY = -1
 BLUE = 1
 RED = 2
 GREEN = 3
 NONE = 0

@unique
class ShapeEnum(Enum):
 ANY = -1
 CIRCLE = 1

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://pymodbus.readthedocs.io/en/latest/index.html
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html
https://github.com/NiryoRobotics/ned_ros/tree/master/niryo_robot_modbus/examples/

 CIRCLE = 1
 SQUARE = 2
 TRIANGLE = 3
 NONE = 0

Functions to convert variables for/from registers

Positive number : 0 - 32767
Negative number : 32768 - 65535
def number_to_raw_data(val):
 if val < 0:
 val = (1 << 15) - val
 return val

def raw_data_to_number(val):
 if (val >> 15) == 1:
 val = - (val & 0x7FFF)
 return val

def string_to_register(string):
 # code a string to 16 bits hex value to store in register
 builder = BinaryPayloadBuilder()
 builder.add_string(string)
 payload = builder.to_registers()
 return payload

----------- Modbus server related function

def back_to_observation():
 # To change
 # joint_real = [0.057, 0.604, -0.576, -0.078, -1.384,0.253]
 joint_simu = [0, -0.092, 0, 0, -1.744, 0]

 joint_to_send = list(map(lambda j: int(number_to_raw_data(j * 1000)), joint_simu))
 client.write_registers(0, joint_to_send)
 client.write_register(100, 1)

 while client.read_holding_registers(150, count=1).registers[0] == 1:
 time.sleep(0.01)

def register_workspace_name(ws_name):
 workspace_request_register = string_to_register(ws_name)
 client.write_registers(626, workspace_request_register)

def register_height_offset(height_offset):
 client.write_registers(620, int(number_to_raw_data(height_offset * 1000)))

def auto_calibration():
 print "Calibrate Robot if needed ..."
 client.write_register(311, 1)
 # Wait for end of calibration
 while client.read_input_registers(402, 1).registers[0] == 1:
 time.sleep(0.05)

def get_current_tool_id():
 return client.read_input_registers(200, count=1).registers[0]

def open_tool():
 tool_id = get_current_tool_id()
 if tool_id == 31:
 client.write_register(513, 1)
 else:
 client.write_register(510, 1)
 while client.read_holding_registers(150, count=1).registers[0] == 1:
 time.sleep(0.05)

Function to call Modbus Server vision pick function
def vision_pick(workspace_str, height_offset, shape_int, color_int):
 register_workspace_name(workspace_str)
 register_height_offset(height_offset)

 client.write_registers(624, number_to_raw_data(shape_int))
 client.write_registers(625, number_to_raw_data(color_int))

 # launch vision pick function
 client.write_registers(612, 1)

 # Wait for end of function
 while client.read_holding_registers(150, count=1).registers[0] == 1:
 time.sleep(0.01)

 # - Check result : SHAPE AND COLOR
 result_shape_int = raw_data_to_number(client.read_holding_registers(159).registers[0])
 result_color_int = raw_data_to_number(client.read_holding_registers(160).registers[0])

 return result_shape_int, result_color_int

----------- Main programm

if __name__ == '__main__':
 print "--- START"

 client = ModbusTcpClient('localhost', port=5020)

 # -------- Variable definition
 # To change
 workspace_name = 'gazebo_1'
 height_offset = 0.0

 # connect to modbus server
 client.connect()
 print "Connected to modbus server"

 # launch auto calibration then go to obs. pose
 auto_calibration()
 back_to_observation()

 # update tool
 client.write_registers(500, 1)

 print 'VISION PICK - pick a red pawn, lift it and release it'
 shape = ShapeEnum.ANY.value
 color = ColorEnum.RED.value
 shape_picked, color_picked = vision_pick(workspace_name, height_offset, shape, color)

 # ---- Go to release pose
 joints = [0.866, -0.24, -0.511, 0.249, -0.568, -0.016]
 joints_to_send = list(map(lambda j: int(number_to_raw_data(j * 1000)), joints))

 client.write_registers(0, joints_to_send)

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

 client.write_registers(0, joints_to_send)
 client.write_register(100, 1)

 # Wait for end of Move command
 while client.read_holding_registers(150, count=1).registers[0] == 1:
 time.sleep(0.01)

 open_tool()

 back_to_observation()

 # Activate learning mode and close connexion
 client.write_register(300, 1)
 client.close()
 print "Close connection to modbus server"
 print "--- END"

More ways to control Ned

There is even more ways to control Ned.

If you are a beginner, look at Blockly section to understand the programming fundamentals.

If you want to go further, maybe experience your own image processing, multi-robot, AI… You can go to PyNiryo for more information.

Blockly

Check out Niryo Studio.

PyNiryo

As explained in the page Use Ned’s TCP server (index.html#use-ned-s-tcp-server), a TCP Server is running on Ned, which allows it to receive commands from any
external device.

PyNiryo is a Python package available on Pip which allows to command the Niryo Robots with easy Python Binding.

January 2022 release - Niryo One & Ned compatibility - Hardware Stack refinement

Requirements

Ubuntu packages

sqlite3
ffmpeg
build-essential
catkin
python-catkin-pkg
python-pymodbus
python-rosdistro
python-rospkg
python-rosdep-modules
python-rosinstall python-rosinstall-generator
python-wstool
ros-melodic-moveit
ros-melodic-control
ros-melodic-controllers
ros-melodic-tf2-web-republisher
ros-melodic-rosbridge-server
ros-melodic-joint-state-publisher-gui

Python libraries

See src/requirements_ned2.txt file

Packages

New packages

niryo_robot_database
niryo_robot_led_ring
niryo_robot_metrics
niryo_robot_reports
niryo_robot_sound
niryo_robot_status
niryo_robot_hardware_stack/can_debug_tools
niryo_robot_hardware_stack/common
niryo_robot_hardware_stack/end_effector_interface
niryo_robot_hardware_stack/serial

Renamed packages

niryo_ned_moveit_config_standalone becomes niryo_moveit_config_standalone
niryo_ned_moveit_config_w_gripper1 becomes niryo_moveit_config_w_gripper1
niryo_robot_hardware_stack/stepper_driver becomes niryo_robot_hardware_stack/can_driver
niryo_robot_hardware_stack/dynamixel_driver becomes niryo_robot_hardware_stack/ttl_driver

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

niryo_robot_hardware_stack/niryo_robot_debug becomes niryo_robot_hardware_stack/ttl_debug_tools

Removed packages

niryo_robot_serial_number
niryo_robot_unit_tests
niryo_robot_hardware_stack/fake_interface

Cleaning and Refactoring

roslint compliant
catkin lint compliant for most part
add xsd validation for launch files and package.xml files
updated packages format to version 3
updated c++ version to c++14
clang and clazy compliance improvement
rosdoc_lite set up in all packages
catkin_tools compliant
install space working
sphinx_doc restructuration
add hardware_version discrimination between ned, one and ned2
add ned2 configuration files in all packages
niryo_robot_arm_commmander refactoring
niryo_robot_python_ros_wrapper refactoring

Features (for Ned and One only)

add VERSION file at root
add CHANGELOG.rst in every package (using catkin_generate_changelog tool)
update PID values for Dynamixels
Replace fake interface by mock drivers for steppers and Dynamixels
Add compatibility for TTL conveyor belts (upcoming)
Add Ned2 features (upcoming)
niryo_robot_bringup refactoring
improve control loops for ttl_driver and joints interface

Know issues (for Ned and One only)

Can’t scan 2 conveyors at the same time. Please scan the conveyors one by one.

Limitations

Calibration deactivated on Simulated Ned and One
Not officially supporting Ned2 hardware version
Hotspot mode is always on by default on reboot for the Niryo One

Niryo Studio

New features

Network settings (DHCP / Static IP)
Hardware detection One / Ned / Ned2
Display TCP Speed
Blockly - Dynamic blocks (Saved pose, workspace)

Bugs fix

Blockly - Conversion RAD / DEG in block

September release - New features batch

Features

Tool commander package

TCP service settings

TCP.msg

SetTCP.srv

Arm commander package

New movements available in ArmMoveCommand.msg

linear pose

shift linear pose

trajectory

Python ROS Wrapper package

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

New movement functions available

move linear pose

linear pose

jog pose shift

jog joints shift

shift linear pose

execute trajectory from pose

New TCP functions available

set_tcp

enable_tcp

reset_tcp

New camera settings functions available

set_brightness

set_contrast

set_saturation

Improvements

Refactoring Tool Commander and Robot Commander packages.

Remove Robot Commander package

Reorder Robot Commander package between Tool Commander and Arm Commander packages.

Self collision detection

Add self-collision detection via MoveIt.

Collision detection

Collision detection improvement on each joints.

Learning mode activation in case of a collision.

Suggest a modification Download as PDF

Ned ROS Documentation (v4.1.1)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

	Ned ROS documentation
	Preamble¶
	Ned Control via ROS¶
	ROS Direct control¶
	Python ROS Wrapper¶
	More ways¶
	ROS Stack overview¶
	Use your Niryo Robot¶
	Use Niryo robot through simulation¶
	Quick start¶
	Getting Started¶
	Ubuntu 18 Installation¶
	Windows Subsystem for Linux installation (experimental)¶
	Overview¶
	High Level Packages¶
	Low Level Packages¶
	Third Parties Packages¶
	Control with Python ROS Wrapper¶
	Modbus¶
	More ways to control Ned¶
	January 2022 release - Niryo One & Ned compatibility - Hardware Stack refinement¶
	September release - New features batch¶

