Ned ROS Documentation (v4.1.1)

Ned ROS documentation

This documentation contains everything you need to understand Ned's functioning and how to control it through ROS.

Itis made as well for users who are using the “physical” robot as for those who want to use a virtual version.

1ROS -‘ﬁ% -

Before diving into the software’s documentation, you can learn more about the robot development in theOverview

Preamble

section.
Then, you should check the Getting Started section to setup your environment and try out the stack by
yourself. If you don’t have a real robot at your disposal, you can still simulate it via the Use Niryo robot through simulation
section.
Ned Control via ROS

Ned is fully based on ROS.

ROS Direct control

| @ Important |

To control the robot directly with ROS, you will need either to be connected in SSH to the physical robot, or to use the simulation.

ROS is the most direct way to control the robot. It allows you to:

e Send commands via the terminal in order to call services, trigger actions, ...
® Write an entire Python/C++ node to realize a full process.

See ROS section to see all Topic & Services available.

Python ROS Wrapper

| @ Important |

To use Python ROS Wrapper, you will need either to be connected in SSH to the physical robot, or to use the simulation.

The Python ROS Wrapper is built on top of ROS to allow a faster development than ROS. Programs are run directly on the robot which allows to trigger them with
the robot's button once a computer is no longer needed.

See Python ROS Wrapper to see which functions are accessible and examples on how to use them.
More ways

Other methods are available to control the robot allowing the user to code and run programs outside its terminal.

Learn more on this section

ROS Stack overview

Ned is a robot based on Raspberry, Arduino & ROS. It uses ROS to make the interface between Hardware and high-level bindings.

On the following figure, you can see a global overview of Niryo's robot software. It will help you understand where are placed each part of the software.

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ros_logo.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/niryo_ned_front.jpg
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/niryo_one_front.jpg
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/niryo_ned_front1.jpg
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/niryo_ned2_front.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/modbus_logo.jpg
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/modbus_logo1.jpg

Ned ROS Documentation (v4.1.1)

U

Modbus

Database
(saL)

===

1

)

— L
RPN RE ==
HIHEH MR == -
* 5|8 § =
=1 Robar
=
=
Niryo robot v3 software

se your Niryo Robot

3;;@

Every Niryo Robot is usable as it is when first switched on, with Niryo Studio for instance. However this robot can be used in many more ways if you want to go
deeper into its understanding.

In this tutorial, we will explain how the robot is setup and the different options you have to control it.

Connecting to the Robot

You can connect to your robot in multiple ways (Ethernet direct, Wi-Fi Hotspot, LAN).

You can find more information on how to connect to your robothere

]

nce your robot is accessible from your computer, you can access it through three ways:

Via Niryo Studio

Niryo Studio provides you with all the tools you need to control the robot. Please refer to theNiryo Studio documentation
for more information.

Via ROS Multimachine.

ROS implements a way to communicate between nodes launched on different machines. By indicating your computer where the Niryo Robot ROS Master Node
is, you can communicate to any ROS Node as if you were directly connected on the robot. See the tutorial on theROS wiki
for more information.

Via ssh (for advanced users only).

Port 22 is open without restriction. The default user is “niryo” and its password is “robotics”.

Robot setup

To help you understand how the OS is setup in the robot, we provide you with some insights of it.

@ Attention

This document is not intended to explain how to completely install a robot from an empty SD card. It is only intended to give you clues on its architecture. Some
of the installation steps are refered in Ubuntu 18 Installation in case you would like to reinstall some part of it (catkin_ws for
example).

System setup

The robot is running on top of an Ubuntu server 18.04.5 for ARM customized to work on a Raspberry Pi 4B.

It comprises all the following elements :

® ROS melodic and its requirements

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ros_stack_global_overview.png
https://docs.niryo.com/product/niryo-studio/source/connection.html
https://docs.niryo.com/product/niryo-studio/v3.2.1/en/index.html
https://wiki.ros.org/ROS/Tutorials/MultipleMachines

Ned ROS Documentation (v4.1.1)

® Sound driver

® |ed ring driver

® Robot System services (connectivity, databases, flask server)
e Basic development tools (compilation, editing tools)

We took care to update and upgrade the system before sending it to you

[@ Attention

We can't ensure that the stability of the system will be kept if you try to update your system by yourself (using apt). We strongly advise you not to do so.

Home setup

The system has been configured with a default user “niryo”. The core of the robot program is installed in the home directory of niryo user/home/niryo.

In this directory, you have:

® catkin_ws : contains the source code and the compiled binary for the Niryo ROS Stack
e firmware_updater : updater for the steppers and the End Effector

® niryo_robot_saved_files : set of files saved on the robot, used by Niryo Studio

® system_software : configuration files for system wide functions

Services and daemons

Two services are used on the robot:

® niryo_system_software : It launches the flask server for APl communication with the robot
® niryo_robot_ros : It launches the stack via /opt/start_ros.sh script at startup.

File /opt/start_ros.sh on the ned2 robot :

source ~/.bashrc
source /home/niryo/catkin_ws/install/release/ned2/setup.bash && roslaunch niryo_robot_bringup niryo_ned2_robot.launch&

If you want to start, stop or disable one of those services, please

Starting the robot manually (for advanced users only)
Before continuing, be sure you know what you are doing.
You will need to have a ssh access setup to continue.

Stopping the service

refer

to

thededicated

First you will need to stop the Niryo ROS Stack that is automatically started when the robot boots up. Use the system linux command to do so:

sudo service niryo_robot_ros stop

Starting the robot
To start the robot, launch the following commands in a ssh terminal:

For Ned

source /home/niryo/catkin_ws/install/release/ned/setup.bash
roslaunch niryo_robot_bringup niryo_ned_robot.launch

For Ned2

source /home/niryo/catkin_ws/install/release/ned2/setup.bash
roslaunch niryo_robot_bringup niryo_ned2_robot.launch

Robot lsunch options
Name Default Value Description
log_level INFO Log level to display for ROS loggers

Enable or disable the TTL bus usage.

ttl_enabled true
This feature is used for debug mainly and can lead to an unstable stack.
Enable or disable the CAN bus usage.
can_enabled true
This feature is used for debug mainly and can lead to an unstable stack.
debug false Launch in debug mode. For development and debug only.

manual

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://manpages.ubuntu.com/manpages/bionic/man8/service.8.html

Ned ROS Documentation (v4.1.1)

Name Default Value Description

To launch the node using timed_roslaunch.
timed true If enabled, will first launch sound and light nodes to have a better user experience.
If disabled, the node is directly launched

Changing the log level

Before launching the robot, you can change the configuration file for the ROS Logger in order to change the log level displayed on the terminal. This file is located in
/home/niryo/catkin_ws/src/niryo_robot_bringup/config/niryo_robot _trace.conf.

It defines the logs levels for all cpp packages, based on log4cxx configuration file syntax. Please see documentation ofrosconsole (http://wiki.ros.org/rosconsole) or
logdcxx (https://logging.apache.org/logdcxx/latest_stable/index.html) for more information.

By default, the level is set to INFO, you can change this value if you want more logs.

Set the default ros output to warning and higher
log4j.logger.ros=INFO

[@ Attention |

DEBUG level is very verbose, you can deteriorate the performances of your robot by doing so.

You can also choose to change only the log level of a specific cpp package by uncommenting one of the following lines and optionally change the associated log
level.

#log4j.logger.ros.can_driver = DEBUG
log4j.logger.ros.common = DEBUG
log4j.logger.ros.conveyor_interface = ERROR

Use Niryo robot through simulation
The simulation allows to control a virtual Ned directly from your computer.

* 4 0L

Video Stream

Property

(x-637, y=44) ~ 155 5155 B:155

Ned in Gazebo Simulation

In this tutorial, you will learn how to setup a robot simulation on a computer.

P
O Note

You can use Niryo Studio with the simulation (https://docs.niryo.com/product/niryo-studio/source/connection.html#using-ned-in-simulation-with-niryo-studio/).
To do so, you just have to connect Niryo Studio to “Localhost”.

Simulation environment installation

O Attention

The whole ROS Stack is developed and tested on ROS Melodic which requires Ubuntu 18.04 to run correctly. The using of another ROS version or OS may lead
to malfunctions of some packages. Please follow the steps in Ubuntu 18 Installation (index.html#ubuntu-18-installation) to install a working environment.

-

Simulation usage

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://wiki.ros.org/rosconsole
https://logging.apache.org/log4cxx/latest_stable/index.html
https://docs.niryo.com/product/niryo-studio/source/connection.html#using-ned-in-simulation-with-niryo-studio/

Ned ROS Documentation (v4.1.1)

| @ Important |

e Hardware features are simulated as if you were using a real robot.
¢ The data returned by the faked drivers is arbitrary and immutable. Among this data, you will have : voltage, temperature, error state (always 0), ping (always
true), end effector state (immutable)

The simulation is a powerful tool allowing to test new programs directly on your computer which prevents to transfer new code on the robot.
It also helps for developing purpose - no need to transfer code, compile and restart the robot which is way slower than doing it on a desktop computer.

Without physics - No visualization

This mode is mainly for simulation and tests purpose, bringing you in the closest state as possible to a real robot control. It is available for all currently supported
architectures. You can access it by using the commands:

® One simulation:

roslaunch niryo_robot_bringup niryo_one_simulation.launch
® Ned simulation:

roslaunch niryo_robot_bringup niryo_ned_simulation.launch

e Ned2 simulation:

roslaunch niryo_robot_bringup niryo_ned2_simulation.launch

This mode is useful if your CPU capacity is limited or if you don't have X server available.

Options

This mode is the more flexible one, as it provides all the possible options to customize the simulation. For the other simulation modes (with RViz and Gazebo) we
will just force some of these parameters to specific values.

Simulation without visuslization Options

Name Default Value Description
log_level INFO Log level to display for ROS loggers
ttl_enabled true Enable or disable the TTL bus usage. This feature is used for debug mainly and can lead to an unstable stack.
can_enabled true Enable or disable the CAN bus usage. This feature is used for debug mainly and can lead to an unstable stack.
debug false Launch in debug mode. For development and debug only.
conf_location version.txt Location of the version.txt file. A path to the file is required.
simu_gripper true Simulate the presence of a gripper id 11 on the bus
simu_conveyor true Simulate the presence of a conveyor (CAN for One and Ned, TTL for Ned2, based on configuration files) on the bus
vision_enabled true Enable the Vision Kit
gazebo false Enable gazebo specific parameters (However it does not launch gazebo, use gazebo specific launch file for that)

Without physics - RViz Visualization

A simple visualization of the robot is possible via a tool called Rviz. This application will simulate the robot with its correct geometry and positions but without
physics to avoid using too much CPU.

Control with trackbar

This visualization allows an easy first control of the robot, and helps to understand joints disposal. You can access it by using the command:

roslaunch niryo_robot_description display.launch

Rviz should open with a window containing 6 trackbars. Each of these trackbars allows to control the corresponding joint.

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

joint_state_publis...

Randomize

Center

Example of trackbars use.
Control with ROS

Not only Rviz can display the robot, but it can also be linked with ROS controllers to show the robot’s actions from ROS commands!
This method can help you debug ROS topics, services and also, API scripts.

Torunit:

roslaunch niryo_robot_bringup desktop_rviz_simulation.launch

@ Interact | ¥ Move Camera -'S\,=> Focus Camera ™3 Measure ~ 2DPose Estimate # 2D Nav Goal 9 Publish Point P o= @

[pisplays

» & Global Options

» v Global Status: Ok

» < Grid v

» i, RobotModel v

v - TF v

b v Status: Ok

Show Names v
Show Axes v
Show Arrows v
Marker Scale 0,6

Update Interval 0
Frame Timeout 15
~ Frames
All Enabled
arm_link
base_link
elbow_link
forearm_link
hand_link
shoulder_link
tool_link
world
wrist_link
» Tree

yvyv vvvrvw

-

Add

Reset Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel:: Zoom. Shift: More options. 31 fps

Rviz opening, with the robot ready fo be controlled with ROS!

RViz Visualization options

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://wiki.ros.org/rviz

Ned ROS Documentation (v4.1.1)

Table of RViz lsunch Options

Name Default Value Description
log_level INFO Log level to display for ROS loggers
hardware_version ned Use the parameters dedicated to this specific hardware_version. Possible values are “one”, “ned” and “ned2”
debug false Launch in debug mode. For development and debug only.
gui true Enable the gui visualization
conf_location version.txt Location of the version.txt file. A path to the file is required.
simu_gripper false Simulate the presence of a gripper id 11 on the bus (Visualisation of the tool will not be visible, whatever the value of this parameter)
simu_conveyor false Simulate the presence of a conveyor (Visualisation of the conveyor will not be visible, whatever the value of this parameter)

With physics - Gazebo Simulation

For the simulation, Ned uses Gazebo, a well known tool among the ROS community. It allows:
e Collision.

e World creation = A virtual environment in which the robot can deal with objects.

® Gripper & Camera using.

The Niryo Gripper 1 has been replicated in Gazebo. The Camera is also implemented.

[@ Note |

{ Gazebo also generates camera distortion, which brings the simulation even closer from the reality!

Launch Gazebo simulation
A specific world has been created to use Ned in Gazebo with 2 workspaces.

Torunit:

roslaunch niryo_robot_bringup desktop_gazebo_simulation.launch

Gazebo view, with the robot ready to be controlled with ROS!

| O Note |

You can edit Gazebo world to do your own! It's placed in the foldenwor/ds of the package niryo_robot_gazebo.

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

Gazebo Simulation options
The user can disable 3 things by adding the specific string to the command line:

o the Gazebo graphical interface: gui:=false.
e the Camera & the Gripper - Vision & Gripper wise functions won't be usable:gripper_n_camera:=false.

| O Hint

Gazebo can be very slow. If your tests do not need Gripper and Camera, consider using Rviz to alleviate your CPU.

Toble of Gazebo lsunch Options

Name Default Value Description
log_level INFO Log level to display for ROS loggers
hardware_version ned Use the parameters dedicated to this specific hardware_version. Possible values are “one”, “ned” and “ned2”
debug false Launch in debug mode. For development and debug only.
gui true Enable the gui visualization
conf_location version.txt Location of the version.txt file. A path to the file is required.
gripper_n_camera true Simulate the presence of a gripper id 11 and a camera on the bus
simu_conveyor true Simulate the presence of a conveyor (Visualisation of the conveyor will not be visible, whatever the value of this parameter)

Quick start

Welcome to the robot quick start. Here you will learn the essential features of the robot to get you started.
Robot connection

There are 4 ways to connect your computer to the robot:

Hotspot

® Type: Wi-Fi

e Difficulty: Easy

e Description: The robot provides its own Wi-Fi network. In this mode, you can connect to the robot like any other Wi-Fi network.
The network name is in the format of NiryoRobot xx-xx-xx and the default password is niryorobot. To change the name of the robot, refer to the section:
Robot Name .

e More informations: Wi-Fi settings, Using Ned in Hotspot mode .

e Advantage: Easy, no cable required.

e Disadvantage: Ethernet connection needed on the computer to have access to the internet. The robot has no access to the internet and cannot update itself.

e IP address: 10.10.10.10

Connected mode

e Type: Wi-Fi

o Difficulty:

e Description: The robot is connected to an existing Wi-Fi network.

e More informations: Wi-Fi settings, Using Ned on your Wi-Fi network.

e Advantage: Ethernet connection needed on the computer to have access to the internet. The robot has no access to the internet and cannot update itself.
e Disadvantage: Stable Wi-Fi connection required.

e |P address: Dependant of your network.

Ethernet direct

e Type: Ethernet

e Difficulty:

® Description: The robot is connected directly to the computer via an ethernet cable.

e More informations: Ethernet settings, Using Ned with an Ethernet cable .

e Advantage: The computer can have access to the internet through Wi-Fi. Safer and better communication with the robot.
® Disadvantage: Cable required. The robot has no access to the internet and cannot update itself.

e [P address: 169.254.200.200

Ethernet through network

e Type: Ethernet

e Difficulty:

® Description: The robot is connected to the network via an ethernet cable, and the computer is connected to the network via an ethernet cable or via Wi-Fi.
e More informations: Ethernet settings .

® Advantage: The robot and the computer can have access to the internet. Better communication with the robot.

® Disadvantage: Cable required.

e |P address: Dependant of your network.

Robot programming

There are 6 ways to program Niryo's robots:

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.niryo.com/product/niryo-studio/source/settings.html#robot-name
https://docs.niryo.com/product/niryo-studio/source/settings.html#ned-wi-fi-setting
https://docs.niryo.com/product/niryo-studio/source/connection.html#using-ned-in-hotspot-mode
https://docs.niryo.com/product/niryo-studio/source/settings.html#ned-wi-fi-setting
https://docs.niryo.com/product/niryo-studio/source/connection.html#using-ned-on-your-wi-fi-network
https://docs.niryo.com/product/niryo-studio/source/settings.html#network-settings
https://docs.niryo.com/product/niryo-studio/source/connection.html#using-ned-with-an-ethernet-cable
https://docs.niryo.com/product/niryo-studio/source/settings.html#network-settings

Ned ROS Documentation (v4.1.1)

Ways to program the Niryo robots

Name Language Difficulty Documentation Description
Niryo Studio Simplified block programming.
Blockly Beginner Blockly $ e) e)
Program your use cases as quickly as possible.
PyNiryo Python Pyniryo Program your robot remotely via a Python APl 2.7 and 3.X .
Python ROS wrapper Program and run your Python code directly in the robot.
Python Python ROS wrapper i . X .
No software or setup required except Niryo Studio or an ssh terminal.
ROS) Program and run your ROS node directly on the robot,
Python, C++ Advanced Niryo Ros

or remotely through ROS Multimachine.

MODBUS Programs can communicate through network MODBUS
Any Advanced MODBUS . X .
with the robots in any language available.
TCP Server Programs can communicate through network TCP
Any Advanced TCP Server

with the robots in any language available.

Niryo One and Ned tips

Program your first move in 30 seconds

The fastest way to program the robot is via Blockly . When you are on the Blockly page and
logged into the robot, switch to learning mode via the toggle. You can then press the button on top of the robot’'s base once to bring up a block with the robot’s
current position. Thus, move your robot by hand, press the button and connect the blocks. Congratulations you have programmed a robot at lightning speed!

At the top right of the Blockly window, you can choose to save the positions in eitherJoints or Pose mode.

Joints & Poses, what's the difference?

The joints are the different joints of the robot. In joint mode, you give the robot a command on each of the robot motors. The default unit used is the radian.
6.28318530718 radian is 2rm and corresponds to 360°. On Niryo Studio you can switch to degrees for more simplicity.

The Pose corresponds to the X, y, z coordinates and the roll, pitch, yaw orientation (respecting the rotation around the X, y, z axes) of the extremity of the robot. The
x-axis is directed to the front of the robot, and the y-axis to the left of the robot. A positive x-coordinate will move the robot forward. A positive y-coordinate will
move the robot to the left, and negative y will move the robot to the right.

Sometimes there can be several axis configurations of the robot that correspond to the same coordinates. This is why it is recommended to use thgoints
commands instead. The Pose is however easier and more intuitive to use to ask the robot to go for example 10cm higher, or 10 to the right.

Use a tool

To use a tool, remember to use the scan function to detect the connected tool. You can then use the grippers, the Vacuum Pump or the Electromagnet as you wish.

Remember to add the scan function at the beginning of each of your programs to avoid any surprises.

Our different tools are intelligent, so the robot will be able to adapt its movements according to the selected tool for a pick and place with vision. Also, you can

program your movements with Pose. By activating the TCP (Tool Center Point)

function, the TCP of the robot, and therefore the movements, will adapt to the tool equipped.

Standard, linear, waypointed moves, what's the difference?

There are many different types of movement possible for robot arms. The 3 most used are the following:

e Standard movements: Also called PTP (Point To Point). This is the simplest movement. In this type of movement, the duration of the movement is minimized,
each joint reaches the final position at the same time. The robot draws a kind of arc of a circle according to the initial and final positions.

® Linear movements: The robot draws a straight line between the start and end position However, a linear movement is not always possible between two points
depending on the constraints of the robot. Make sure that the movement is feasible. If not, the robot will return an error.

e Smoothed movements by waypoints: This is where we ask the robot to make a movement to an end point by passing through intermediate points. The robot
draws linear paths, or PTP if linear motion is not possible, between each waypoint without stopping. It is also possible to record blend radius to smooth the

movement and to draw curves between the points. This path is ideal for dodging obstacles.

PO P2

Waypointed trajectory with blend radius

Start, Pause, Cancel a program execution
You may not know it, but the button on the top of the base of the robot also allows you to start, pause and stop a program.

When a program is running:

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.niryo.com/product/niryo-studio/source/blockly_api.html
https://docs.niryo.com/dev/pyniryo/index.html
https://docs.niryo.com/dev/ros/source/ros_wrapper.html
https://docs.niryo.com/dev/ros/source/stack/overview.html
https://docs.niryo.com/dev/ros/source/modbus.html
https://docs.niryo.com/dev/ros/source/tcp_server.html
https://docs.niryo.com/product/niryo-studio/source/blockly_api.html
https://docs.niryo.com/product/niryo-studio/source/settings.html#robot-tcp-tool-center-point
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/waypointed_trajectory.png
https://ros-planning.github.io/moveit_tutorials/doc/pilz_industrial_motion_planner/pilz_industrial_motion_planner.html#user-interface-sequence-capability

Ned ROS Documentation (v4.1.1)

® 1 press pauses the program
® 2 presses will pause the programme and activate the learning mode

When a program is paused:
® 1 press resumes the program
® 2 presses stop the program
e |f there is no intervention for 30 seconds, the programme stops automatically

When the program is paused, the LED at the back flashes white.

When no program is running you can also start a program by pressing the same button once. To set it up, go to theProgram Autorun

Getting Started

The Niryo ROS Stack can be installed in multiple target OS:

® Raspberry Pi 3 (deprecated, not supported anymore)

® Raspberry Pi4

e Desktop

As the stack is based on ROS Melodic or Kinetic (deprecated), you need to be on an Ubuntu based system.

We currently support the following versions:

e Ubuntu 18.04 Ubuntu 18 Installation
e Windows Subsystem for Linux 2 (WSL 2) - Ubuntu 18.04 Windows Subsystem for Linux installation (experimental)

Ubuntu 18 Installation

This guide will explain the steps needed to install the Niryo Robot Stack on an Ubuntu 18 OS. You can apply these steps to set up a working simulation environment
on any development computer, or to set up a working robot stack on a Raspberry Pi.

Installation index:

® Prerequisites

e |nstall ROS dependencies

e Setup Ned ROS environment

Prerequisites

The Niryo ROS Stack runs on top of ROS Melodic or Kinetic (deprecated). This version of ROS is strongly dependent of Ubuntu 18.04 version, thus, this OS is currently
the only official supported OS.

Be sure to have an up to date system before continuing

sudo apt-get update
sudo apt-get upgrade
sudo apt-get dist-upgrade

Ubuntu packages
The Niryo ROS Stack needs the following packages in order to run correctly:
® build-essential

® sqlite3
e ffmpeg

| O Note

These packages are mostly useful on a real robot, but as the code is identical between simulation and real functioning, a lack of these packages on a simulation
can lead to unstabilities.

Python environment

The Python environment is installed using the requirements_ned2.txt file

pip2 install -r src/requirements_ned2.txt

@ Note

ROS Melodic is still using Python2 internally so are our Python scripts to keep version alignment. You thus need to install the requirements using Python2 pip2
tool

ROS set up

| © Note |

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.niryo.com/product/niryo-studio/source/programs.html#program-autorun

Ned ROS Documentation (v4.1.1)

L All terminal command listed are for Ubuntu users.

Place yourself in the folder of your choice and create a folder catkin_ws_niryo_ned as well as a sub-folder src:

mkdir -p catkin_ws_niryo_ned/src

Then go to the foldercatkin_ws_niryo_ned and clone Ned repository in the folder src. For the future operations, be sure to stay in thecatkin_ws_niryo_ned folder:

cd catkin_ws_niryo_ned
git clone https://github.com/NiryoRobotics/ned_ros src

Install ROS dependencies

Install ROS

You need to install ROS Melodic. To do so, follow the ROS official tutorialhere and chose the Desktop-Full Install.
Install additional packages

To ensure the functioning of all Ned's packages, you need to install several more packages:

Method 1: Quick installation via ROSDep

For each package, we have referenced all the dependencies in their respectivepackage.xml file, which allows to install each dependency via rosdep command:

rosdep update
rosdep install --from-paths src --ignore-src --default-yes --rosdistro melodic --skip-keys "python-rpi.gpio"

Method 2: Full installation
ROS packages needed are:

® catkin

® python-catkin-pkg

e python-pymodbus

e python-rosdistro

® python-rospkg

e python-rosdep-modules

e python-rosinstall python-rosinstall-generator
® python-wstool

To install a package on Ubuntu:

sudo apt install <package_name>

Melodic specific packages needed are:

® moveit

e control

controllers

e tf2-web-republisher
rosbridge-server
joint-state-publisher-gui

To install a ROS Melodic’s package on Ubuntu:

sudo apt install ros-melodic-<package_name>

Setup Ned ROS environment

| @ Note

Be sure to be still placed in the catkin_ws_niryo_ned folder.

Then perform the make of Ned's ROS Stack via the command:

catkin_make

If no errors occurred during the make phase, the setup of your environment is almost complete!

It is necessary to source the configuration file to add all Ned packages to ROS environment. To do so, run the command:

source devel/setup.bash

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://wiki.ros.org/melodic/Installation/Ubuntu

Ned ROS Documentation (v4.1.1)

It is necessary to run this command each time you launch a new terminal. If you want to make this sourcing appends for all your future terminals, you can add it to
your bashrec file:

echo "source $(pwd)/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc

Installation is now finished!
Windows Subsystem for Linux installation (experimental)

Microsoft is developping since 2016 a compatibility layer for running Linux binary executables natively on Windows 10. With the version 2 issued in 2019, this
“hidden Linux kernel” is now mature enough to run complex operations like the full ROS stack [2].

Thus you will be able to run simulations for the Ned, Niryo One or Ned2 robots on a Windows machine.

O Note

You have to be running Windows 10 version 2004 (Build 19041) or higher for WSL2 to work.

© Warning

The installation under WSL is not originally supported by Niryo, this guide is provided on an indicative basis only.

The following guide is mainly adapted from this blog post from Jack Kawell, feel free to refer to it for more complete informationl']

Install wsL2 [3]

1. Enable Windows Subsystem for Linux on your machine (in a powershell terminal)
dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart
2. Update WSL to use version 2 (in a powershell terminal)

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart

3. You then need to restart your machine to finish the WSL installation and the upgrade to WSL2.
4. Set default version of WSL to 2 (in a powershell terminal)

wsl --set-default-version 2

5. Install an Ubuntu 18.04 distribution using the Windows Store

Microsoft Store
& Home Gaming Entertainment Productivity —Deals O Search (£

Results for: ubuntu

Departments
Al departments

_ || Avaitable on

Apps (20) snowan

Ubuntu Ubuntu 20.04 LTS Ubuntu 18.04 LTS SAVE 40,00 € Windows Subsystem OpeninW!
Akkkn 02 Akkkx 28 *okkHx 13 X410 for Linux Preview Hokkx 1
= = = Kokkkk O *xHxS 2 =

Ze =
Installed Free Installed 4399-€9,99 € Free Free

Ubuntu 18.04 in the Windows Store
6. Launch the app. The first time, it asks you to finish the initialization of the OS.
Your Ubuntu OS is now ready. You can continue the build of the stack using the tutorial.
Setting up GUI forwarding

WSL does not come with an X server. Thus, you will not be able to launch any graphical windows for now. But we can change this by using a Windows X server and
forward the GUI to it using GUI forwarding.

Many X servers exist for Windows 10. We tested VcXsrc, and it correctly does the job. https://sourceforge.net/projects/vcxsrv/
(https://sourceforge.net/projects/vexsrv/)

1. Launch VcXsrv. Be sure to have the following options : - Uncheck “Native OpenGL"” - Check “Disable access control”

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/windows_store.png
https://sourceforge.net/projects/vcxsrv/

Ned ROS Documentation (v4.1.1)

Display setting Client startup Extra settings X
Select display settings Select how to start clients Extra settings
Choose how VeXerv display programs
¥ Cipboard
«
{, S St the tegrated cipboard manager
Mutiple windows This wil just start the xserver. You willbe able to startlocal clents later. [Primary Selection
Aiso map the PRIMARY selection to the windows cipboard.
- ™ Native opengl
S Use the native windows opengl lbrary (gl). Make sure to export the
This il tt 3ol remo rogran wfich il connect o the xenver You il be abe LIBGL_ALWAYS_INDIRECT environment variable.
" One large window € One window =z -
large O o to start local clients later too. Remote programs are started using S D
‘ & Use this when you wart vexsry to accept connections from al clints
‘ Addtional parameters for VcXsrv
" "
Diplayrumber ~ [1 Mo o
(Specfy -1to et vexsry automaticaly choose one)
: Next > Cancel <Back Cancel <Back Cancel
0 Note |

You can directly use this configuration by using this& configuration file

2. You need to export the address of your Xserver in Ubuntu 18 to forward the GUI

export DISPLAY=$(cat /etc/resolv.conf | grep nameserver | awk '{print $2}'):0

You can add this to your bashrc file.

3. You can check that your forwarding works by using simple X11 apps for example:

sudo apt update
sudo apt install x11-apps
xcalc

4. Install ROS Melodic (see instructions here)
5. Try launching Rviz

roscore & rosrun rviz rviz

6. You should now be able to launch any simulation of the One, Ned or Ned2 using Rviz or Gazebo
Troubleshooting

Error: Can't open display: 192.168.1.44:0.0 Your DISPLAY variable does not match the address of your XServer.

Try:
e Check that you correctly launched your XServer with the required options (Disable access control is essential)

® Check that the IP you gave is correct (you need the address in /etc/resolv.conf to have it work)

OpenGL issues Some people have said that they run into issues with OpenGL applications like Rviz. If you do, try setting the environment variable
LIBGL_ALWAYS_INDIRECT=0 in your WSL2 terminal (you can just add export LIBGL_ALWAYS_INDIRECT=0 to the end of your .bashrc file).

[11 https://jack-kawell.com/2020/06/12/ros-wsl|2/

[2] https://docs.microsoft.com/en-us/windows/wsl/compare-versions

[3] https://docs.microsoft.com/en-us/windows/wsl/install-win10

Overview
Ned is a robot based on Raspberry, Arduino & ROS. It uses ROS to make the interface between Hardware and high-level bindings.

On the following figure, you can see a global overview of the Niryo's robot software in order to understand where are placed each part of the software.

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/vcxsrv_1.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/vcxsrv_2.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/vcxsrv_3.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_downloads/818503a538e687731e85c64365865076/wsl_config.xlaunch
https://jack-kawell.com/2020/06/12/ros-wsl2/
https://docs.microsoft.com/en-us/windows/wsl/compare-versions
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Ned ROS Documentation (v4.1.1)

o A
D)
s [s |
v} Modbus
ROSbridge
ROS e
Fython ROS Wrapgar |
| [
ROS MASTER
| |
= I D?éagﬁ)se
Hardware Stack ERE
ROSControl
RPI | | :
I [I
I N | =
I I I
e L=
AR HEERE g@ | |
El3|s gl|g g § — E
&l |2 5 & B Cusiom
Robot
Niryo robot v3 software

ROS Logo

ROS (Robot Operating System) is an Open-Source Robotic Framework which allows to ease robot software development. The framework is used in almost each part
of Ned's software.

The Stack is split into two parts:

e The High Level Packages (motion planner, vision, ...), developed in Python to give good readability
® The Low Level Packages (drivers, hardware management, ...), developed in C++ to ensure real time capabilities.

| © Note |

To learn more about ROS, go on Official ROS Wiki

High Level Packages

In this section, you will have access to all information about each Niryo Robot's ROS packages developed for High Level interfaces.
Niryo_robot_bringup

This packages provides config and launch files to start Ned and ROS packages with various parameters.

Launch files are placed in the/aunch folder. Only files with .launch extension can be executed.

‘ Desktop Gazebo ‘ ‘ Desktop Rviz ‘

Base Simulation

Base Common

Bring Up Launch Files’ organizetion

On RaspberryPI
One

The file niryo_one_robot.launch allows to launch ROS on a Raspberry Pi 3.
This file is automatically launched when Niryo One boots (Niryo One RPi3B image).

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ros_logo1.png
http://wiki.ros.org/
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/bringup_organization.png

Ned ROS Documentation (v4.1.1)

Command to launch Niryo One’s ROS Stack:

roslaunch niryo_robot_bringup niryo_none_robot.launch

Ned

The file niryo_ned_robot.launch allows to launch ROS on a Raspberry Pi 4.
This file is automatically launched when Ned boots (Ned RPi4B image).

Command to launch Ned's ROS Stack:

roslaunch niryo_robot_bringup niryo_ned_robot.launch

Ned2

The file niryo_ned2_robot.launch allows to launch ROS on a Raspberry Pi 4.
This file is automatically launched when Ned2 boots (Ned2 RPi4B image).

Command to launch Ned2's ROS Stack:

roslaunch niryo_robot_bringup niryo_ned2_robot.launch

On Desktop (Simulation)
As the simulation happens on a computer, the hardware-related stuff is not used.

For both of following launch files, you can set:

e guito “false” in order to disable graphical interface.
Gazebo simulation

Run Gazebo simulation. The robot can do everything that is not hardware-related:

® move, get_pose.

e use the camera (to disable it, set “camera” parameter to ‘false’).

® use the Gripper 1 (to disable it, set “simu_gripper” parameter to ‘false’).
® save/run programs, go to saved pose, ...

Command to launch the simulation:

roslaunch niryo_robot_bringup desktop_gazebo_simulation.launch

To disable camera & gripper:

roslaunch niryo_robot_bringup desktop_gazebo_simulation.launch gripper_n_camera:=false

To run it with a specific hardware version, use the command:

roslaunch niryo_robot_bringup desktop_gazebo_simulation.launch hardware_version:=ned # one, ned2

Rviz simulation
Run Rviz simulation. You can access same features as Gazebo except Camera & Gripper.

To run it, use the command:

roslaunch niryo_robot_bringup desktop_rviz_simulation.launch

To run it with a specific hardware version, use the command:

roslaunch niryo_robot_bringup desktop_rviz_simulation.launch hardware_version:=ned # one, ned2

Notes - Ned Bringup
niryo_robot_base files setup many rosparams, these files should be launched before any other package.

The following files are used to configure the robot logs:
® desktop_gazebo_simulation_trace.conf
® desktop_rviz_simulation_trace.conf
® niryo_robot trace.conf

Niryo_robot_arm_commander

This package is the one dealing with all commander related stuff.

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

It is composed of only one node, which runs separately the arm commander and the tool commander.
Commander node

The ROS Node is made to interact with:
® The arm through Movelt!
® The tools through the tool controller.
All commands are firstly received on the actionlib server which:

e Handles concurrent requests.

® Checks if the command can't be processed due to other factors (ex: learning mode).
® Validates parameters.

e (Calls required controllers and returns appropriate status and message.

It belongs to the ROS namespace: /niryo_robot_arm_commander/ .

Parameters - Commander

Commander’s Paramerers
Name Description

Reference frame used by Movelt! for moveP.
reference_frame

Default : ‘world’

move_group_commander_name Name of the group that Movelt is controlling. By default: “arm”
jog_timer_rate_sec Publish rate for jog controller
simu_gripper If you are using the simulated Gripper and want to control the Gripper

Action Server - Commander

Commander Package Action Servers

Name Message Type Description

robot_action RobotMove Command the arm and tools through an action server

Services - Commander

Commender Package Services

Name Message Type Description
is_active GetBool Indicate whereas a command is actually running or not
stop_command Trigger Stop the actual command
set_max_velocity_scaling_factor Setint Set a percentage of maximum speed
/niryo_robot/kinematics/forward GetFK Compute a Forward Kinematic
/niryo_robot/kinematics/inverse GetlK Compute a Inverse Kinematic

Messages - Commander

Commender Psckage Messages

Name Description
ArmMoveCommand Message to command the arm
ShiftPose Message for shifting pose
PausePlanExecution Pause movement execution

All these services are available as soon as the node is started.
Dependencies - Commander

e actionlib

e actionlib_msgs

e control_msgs

® geometry_msgs
® Movelt!

® moveit_msgs

e Niryo_robot_msgs
e Niryo robot tools commander
® python-numpy

e ros_controllers

® rosbridge_server
® sensor_msgs

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://wiki.ros.org/actionlib
http://docs.ros.org/melodic/api/actionlib_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/control_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/geometry_msgs/html/index-msg.html
https://moveit.ros.org/
http://docs.ros.org/melodic/api/moveit_msgs/html/index-msg.html
https://numpy.org/
http://wiki.ros.org/ros_controllers
http://wiki.ros.org/rosbridge_server
http://docs.ros.org/melodic/api/sensor_msgs/html/index-msg.html

Ned ROS Documentation (v4.1.1)

® std_msgs
e tf2_web_republisher
® trajectory_msgs

Action files - Commander

RobotMove

goal
niryo_robot_arm_commander/ArmMoveCommand cmd
result

int32 status

string message

feedback
niryo_robot_msgs/RobotState state

Services files - Commander

GetFK

float32[] joints

niryo_robot_msgs/RobotState pose

GetlK

niryo_robot_msgs/RobotState pose

bool success
float32[] joints

JogShift
int32 JOINTS_SHIFT = 1
int32 POSE_SHIFT = 2
int32 cmd
float32[] shift_values

int32 status
string message

Messages files - Commander

ArmMoveCommand

int32 JOINTS = 0 # uses joints

int32 POSE = 1 # uses position and rpy

int32 POSITION = 2 # uses position

int32 RPY = 3 # uses rpy

int32 POSE_QUAT = 4 # uses position and orientation
int32 LINEAR_POSE = 5 # uses position and rpy

int32 SHIFT_POSE = 6 # uses shift

int32 SHIFT_LINEAR_POSE = 7 # uses shift

int32 EXECUTE_TRAJ = 8 # uses dist_smoothing, list_poses

int32 DRAW_SPIRAL = 9
int32 DRAW_CIRCLE = 10
int32 EXECUTE_FULL_TRAJ = 11
int32 EXECUTE_RAW_TRAJ = 12

int32 cmd_type

float64[] joints

geometry_msgs/Point position
niryo_robot_msgs/RPY rpy

geometry msgs/Quaternion orientation

niryo_robot_arm_commander/ShiftPose shift

geometry _msgs/Pose[] list poses
float32 dist_smoothing

trajectory_msgs/JointTrajectory trajectory

float64[] args

PausePlanExecution

int8 STANDBY = 0
int8 PLAY = 1
int8 PAUSE = 2
int8 RESUME = 3
int8 CANCEL = 4

float64 PAUSE_TIMEOUT = 30.0

int8 state

ShiftPose

int32 axis_number
float64 value

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html
http://wiki.ros.org/tf2_web_republisher
http://docs.ros.org/melodic/api/trajectory_msgs/html/index-msg.html

Ned ROS Documentation (v4.1.1)

Niryo_robot_description
This package contains URDF files and meshes (collada + stl) for Ned.

To display Ned on Rviz:

roslaunch niryo_robot_description display.launch

To display other Niryo robots on Rviz:

roslaunch niryo_robot_description display.launch hardware_version:=ned2 # one, ned

Note : 3D visualization is not available on Ned Raspberry Pi4 image. To use the following commands, you must have setup Ned ROS Stack on your computer.

Niryo_robot_gazebo

GAZEBO

Gozebo

Usage

This package contains models, materials & Gazebo worlds.

When launching the Gazebo version of the ROS Stack, the fileniryo_robot_gazebo_world.launch.xml will be called to generate the Gazebo world.
Create your own world

Create your world’s file and put it on the folderworlds. Once it is done, you have to change the parameterworld_name in the
niryo_robot_gazebo_world.launch.xml.

You can take a look at the Gazebo world by launching it without robot by precising the world name in the argworld_name:

roslaunch niryo_robot_gazebo niryo_gazebo_world.launch world_name:=niryo_cube_world hardware_version:=ned # one, ned2

Niryo_robot_msgs

This package contains standard messages which can be used by all other packages.

Niryo messages

Ned Messages
Name Description
BusState TTL bus state
CommandStatus Enum-wise message for status code
ObjectPose X, Y, z, roll, pitch, yaw
RobotState position, rpy, quaternion
RPY roll, pitch, yaw
HardwareStatus several hardware information
SoftwareVersion several software version
Niryo services
Ned Services
Name Description
GetBool Return a bool
Getlnt Return a integer

GetNameDescriptionList Return a name list and a description list

GetString Return a string
GetStringList Return a list of string
Ping Used to ping APIs

file

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/gazebo_logo.png

Ned ROS Documentation (v4.1.1)

Name Description
SetBool Set a bool and return status
SetFloat Set a float and return status
Setint Set a integer and return status
SetString Set a string and return status
Trigger Trigger a task

Niryo message dependencies

e geometry_msgs

Niryo message files

BusState

std_msgs/Header header
bool connection_status
uint8[] motor_id_connected
string error

CommandStatus

int32 val

overall behavior
int32 SUCCESS = 1

int32 CANCELLED = 2
int32 PREEMPTED = 3

int32 FAILURE = -1
int32 ABORTED = -3
int32 STOPPED = -4

int32 BAD_HARDWARE_VERSION = -10
int32 ROS_ERROR = -20

int32 FILE_ALREADY_EXISTS = -30
int32 FILE_NOT_FOUND = -31

int32 UNKNOWN_COMMAND = -50
int32 NOT_IMPLEMENTED_COMMAND = -51
int32 INVALID_PARAMETERS = -52

- Hardware

int32 HARDWARE_FAILURE = -110

int32 HARDWARE_NOT_OK = -111

int32 LEARNING_MODE_ON = -112

int32 CALIBRATION_NOT_DONE = -113
int32 DIGITAL_IO_PANEL_ERROR = -114
int32 LED_MANAGER_ERROR = -115
int32 BUTTON_ERROR = -116

int32 WRONG_MOTOR_TYPE = -117

int32 TTL_WRITE_ERROR -118

int32 TTL_READ_ERROR -119

int32 CAN_WRITE_ERROR -120

int32 CAN_READ_ERROR = -121

int32 NO_CONVEYOR_LEFT = -122

int32 NO_CONVEYOR_FOUND = -123
int32 CONVEYOR_ID_INVALID = -124
int32 CALIBRATION_IN_PROGRESS = -125

- Vision

int32 VIDEO_STREAM_ON_OFF_FAILURE = -170
int32 VIDEO_STREAM_NOT_RUNNING = -171
int32 OBJECT_NOT_FOUND = -172

int32 MARKERS_NOT_FOUND = -173

- Commander

Arm Commander

int32 ARM_COMMANDER_FAILURE = -220
int32 GOAL_STILL_ACTIVE = -221
int32 JOG_CONTROLLER_ENABLED = -222
int32 CONTROLLER_PROBLEMS = -223
int32 SHOULD_RESTART = -224

int32 JOG_CONTROLLER_FAILURE = -225

int32 COLLISION = -226

int32 PAUSE_TIMEOUT= -227
int32 CANCEL_PAUSE= -228

int32 PLAN_FAILED = -230
int32 NO_PLAN_AVAILABLE = -231
int32 INVERT_KINEMATICS_FAILURE = -232

Tool Commander

int32 TOOL_FAILURE = -251

int32 TOOL_ID_INVALID = -252

int32 TOOL_NOT_CONNECTED = -253

int32 TOOL_ROS_INTERFACE_ERROR = -254

- Pose Handlers

int32 POSES_HANDLER_CREATION_FAILED = -300
int32 POSES_HANDLER_REMOVAL_FAILED = -301
int32 POSES_HANDLER_READ_FAILURE = -302
int32 POSES_HANDLER_COMPUTE_FAILURE = -303

int32 DYNAMIC_FRAME_EDIT_FAILED = -305
int32 DYNAMIC_FRAME_CREATION_FAILED = -306
int32 CONVERT_FAILED = -307

int32 WORKSPACE_CREATION_FAILED = -308

_ Traiartary Handlor

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/geometry_msgs/html/index-msg.html

Ned ROS Documentation (v4.1.1)

" Ciegevn e
int32 TRAJECTORY_HANDLER_CREATION_FAILED = -310

int32 TRAJECTORY_HANDLER_REMOVAL_FAILED = -311

int32 TRAJECTORY_HANDLER_RENAME_FAILURE = -312

int32 TRAJECTORY_HANDLER_EXECUTE_REGISTERED_FAILURE = -313
int32 TRAJECTORY_HANDLER_EXECUTE_FAILURE = -314

int32 TRAJECTORY_HANDLER_GET_TRAJECTORY_FAILURE = -315
int32 TRAJECTORY_HANDLER_GET_TRAJECTORY_LIST_FAILURE = -316

- Programs Manager

int32 PROGRAMS_MANAGER_FAILURE = -320

int32 PROGRAMS_MANAGER_READ_FAILURE = -321

int32 PROGRAMS_MANAGER_UNKNOWN_LANGUAGE = -325
int32 PROGRAMS_MANAGER_NOT_RUNNABLE_LANGUAGE = -326
int32 PROGRAMS_MANAGER_EXECUTION_FAILED = -327
int32 PROGRAMS_MANAGER_STOPPING_FAILED = -328
int32 PROGRAMS_MANAGER_AUTORUN_FAILURE = -329
int32 PROGRAMS_MANAGER_WRITING_FAILURE = -330
int32 PROGRAMS_MANAGER_FILE_ALREADY_EXISTS = -331
int32 PROGRAMS_MANAGER_FILE_DOES_NOT_EXIST = -332

- Credentials
int32 CREDENTIALS_FILE_ERROR = -400
int32 CREDENTIALS_UNKNOWN_ERROR = -401

- System Api Client

int32 SYSTEM_API_CLIENT_UNKNOWN_ERROR = -440
int32 SYSTEM_API_CLIENT_INVALID_ROBOT_NAME = -441
int32 SYSTEM_API_CLIENT_REQUEST_FAILED = -442
int32 SYSTEM_API_CLIENT_UNKNOWN_COMMAND = -443
int32 SYSTEM_API_CLIENT_COMMAND_FAILED = -444

- Database

int32 DATABASE_DB_ERROR = -460

int32 DATABASE_SETTINGS_UNKNOWN = -461

int32 DATABASE_SETTINGS_TYPE_MISMATCH = -462
int32 DATABASE_FILE_PATH_UNKNOWN = -463

- Reports

int32 REPORTS_UNABLE_TO_SEND = -470
int32 REPORTS_SENDING_FAIL = -471

int32 REPORTS_FETCHING_FAIL = -472

int32 REPORTS_SERVICE_UNREACHABLE = -473

- Sound interface

int32 SOUND_FILE_NOT_FOUND = -500
int32 PROTECTED_SOUND_NAME = -501
int32 INVALID_SOUND_NAME = -502
int32 INVALID_SOUND_FORMAT = -503
int32 SOUND_TIMEOUT = -504

- I2C interface
int32 MISSING_I2C = -510

ObjectPose

float64 x
float64
float64 z

<

floaté4 roll
float64 pitch
float64 yaw

RobotState

geometry_msgs/Point position
niryo_robot_msgs/RPY rpy
geometry_msgs/Quaternion orientation

geometry msgs/Twist twist
float64 tcp_speed

RPY

roll, pitch and yaw
floaté4 roll

float64 pitch
float64 yaw

HardwareStatus

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

std_msgs/Header header

Raspberry Pi board
int32 rpi_temperature

Ned, One,
string hardware_version

Hardware State
int8 ERROR = -1
int8 NORMAL = @
int8 DEBUG = 1
int8 REBOOT = 2

int8 hardware_state

Motors

bool connection_up
string error_message
bool calibration_needed

bool calibration_in_progress

string[] motor_names
string[] motor_types

int32[] temperatures
float64[] voltages

int32[] hardware_errors
string[] hardware_errors_message

SoftwareVersion

string rpi_image_version
string ros_niryo_robot_version
string robot_version

string[] motor_names
string[] stepper_firmware_versions

Niryo Service files

GetBool

bool value

GetInt

int32 value

GetNameDescriptionList

string[] name_list
string[] description_list

GetString

string value

GetStringList

string[] string_list

Ping

string name
bool state

SetBool

bool value

int32 status
string message

SetFloat

float32 value

int32 status
string message

SetInt

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

int32 value

int32 status
string message

SetString

string value

int32 status
string message

Trigger

int32 status
string message

Niryo_robot_modbus

Niryo_robot_poses_handlers

This package is in charge of dealing with transforms, workspace, grips and trajectories.

Poses handlers node

Description - Poses handlers

The ROS Node is made of several services to deal with transforms, workspace, grips and trajectories.

It belongs to the ROS namespace: /niryo_robot_poses_handlers/ .

Workspaces

A workspace is defined by 4 markers that form a rectangle. With the help of the robot’s calibration tip, the marker positions are learned. The camera returns poses

(x, y, yaw) relative to the workspace. We can then infer the absolute object pose in robot coordinates.

Grips

When we know the object pose in robot coordinates, we can't directly send this pose to the robot because we specify the target pose of the tool_link and not of the
actual TCP (tool center point). Therefore we introduced the notion of grip. Each end effector has its own grip that specifies where to place the robot with respect to

the object.

Currently, the notion of grip is not part of the python/tcp/blockly interface because it would add an extra layer of complexity that is not really necessary for the

moment

Therefore we have a default grip for all tools that is selected automatically based on the current tool id. However, everything is ready if you want to define custom

grips, e.g. for custom tools or for custom grip positions.

The vision pick loop

1. The camera detects objects relative to markers and sends Xrel, Yrel, YaWrel-
2. The object is placed on the workspace, revealing the object pose in robot coordinates x, y, z, roll, pitch, yaw.
3. The grip is applied on the absolute object pose and gives the pose the robot should move to.

Poses & trajectories
List of poses

Parameters - Poses handlers

Name
workspace_dir
grip_dir
poses_dir

dynamic_frame_dir

Services - Poses handlers

Name
manage_workspace

get_workspace_ratio

Poses Handllers Paramefers

Description
Path to the Workspace storage mother folder
Path to the Grip storage mother folder
Path to the Poses storage mother folder

Path to the dynamic frames storage mother folder

Poses Handllers” Services

Message Type Description
ManageWorkspace Save/Delete a workspace
GetWorkspaceRatio Get ratio of a workspace

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

Name Message Type Description
get_workspace_list GetNameDescriptionList Get list of workspaces name & description
get_workspace_poses GetWorkspaceRobotPoses Get workspace's robot poses
get_workspace_points GetWorkspacePoints Get workspace’s robot points
get_workspace_matrix_poses GetWorkspaceMatrixPoses Get workspace's robot matrix poses
get_target_pose GetTargetPose Get saved programs name
manage_pose ManagePose Save/Delete a Pose
get_pose GetPose Get Pose
get_pose_list GetNameDescriptionList Get list of poses name & description
manage_dynamic_frame ManageDynamicFrame Save/Edit/Delete a dynamic frame
get_dynamic_frame_list GetNameDescriptionList Get list of dynamic frame
get_dynamic_frame GetDynamicFrame Get dynamic frame
get_transform_pose GetTransformPose Get transform between two frames

All these services are available as soon as the node is started.
Dependencies - Poses handlers

® geometry_msgs
® moveit_msgs

e Niryo_robot_msgs
o tf

Services & messages files - Poses handlers

GetDynamicFrame (Service)

string name

int32 status

string message
niryo_robot_poses_handlers/DynamicFrame dynamic_frame

GetPose (Service)

string name

int32 status

string message
niryo_robot_poses_handlers/NiryoPose pose

GetTargetPose (Service)

string workspace

float32 height_offset

float32 x_rel

float32 y_rel

float32 yaw_rel

int32 status

string message
niryo_robot_msgs/RobotState target_pose

GetTransformPose (Service)

string source_frame
string local_frame

geometry_msgs/Point position
niryo_robot_msgs/RPY rpy
int32 status

string message
geometry_msgs/Point position
niryo_robot_msgs/RPY rpy

GetWorkspaceMatrixPoses (Service)

string name

int32 status

string message

geometry_msgs/Point[] matrix_position
geometry_msgs/Quaternion[] matrix_orientation

GetWorkspacePoints (Service)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/geometry_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/moveit_msgs/html/index-msg.html
http://wiki.ros.org/tf

Ned ROS Documentation (v4.1.1)

string name

int32 status
string message
geometry_msgs/Point[] points

GetWorkspaceRatio (Service)

string workspace

int32 status
string message
float32 ratio # width/height

GetWorkspaceRobotPoses (Service)

string name

int32 status
string message
niryo_robot_msgs/RobotState[] poses

ManageDynamicFrame (Service)

int32 SAVE = 1

int32 SAVE_WITH_POINTS = 2

int32 EDIT = 3

int32 DELETE = -1

int32 cmd

niryo_robot_poses_handlers/DynamicFrame dynamic_frame

int32 status
string message

ManagePose (Service)

int32 cmd
int32 SAVE = 1

int32 DELETE =il

niryo_robot_poses_handlers/NiryoPose pose

int32 status
string message

ManageWorkspace (Service)

int32 SAVE = 1

int32 SAVE_WITH_POINTS = 2
int32 DELETE = -1

int32 cmd

niryo_robot_poses_handlers/Workspace workspace

int32 status
string message

NiryoPose (Message)

string name
string description

float64[] joints
geometry_msgs/Point position
niryo_robot_msgs/RPY rpy
geometry_msgs/Quaternion orientation

Workspace (Message)

string name # maximum lenght of workspace's name is 30 characters
string description

geometry_msgs/Point[] points
niryo_robot_msgs/RobotState[] poses

Niryo_robot_programs_manager

This package is in charge of interpreting/running/saving programs. It is used by Niryo Studio.

Programs manager node

The ROS Node is made of several services to deal with the storage and running of programs.

Calls are not available from the Python ROS Wrapper, as it is made to run its programs with the Python ROS Wrapper.

It belongs to the ROS namespace: /niryo_robot_programs_manager/ .

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

Parameters - Programs manager

Programs Manager's Paramefters

Name Description
autorun_file_name Name of the file containing auto run infos
programs_dir Path to the Program storage mother folder

Services - Programs manager

Programs manager Services

Name Message Type Description
execute_program ExecuteProgram Executes a program
execute_program_autorun Trigger Executes autorun program
get_program GetProgram Retrieves saved program
get_program_autorun_infos GetProgramAutoruninfos Gets autorun settings
get_program_list GetProgramlList Gets saved programs’ name
manage_program ManageProgram Saves and Deletes programs
set_program_autorun SetProgramAutorun Sets autorun settings
stop_program Trigger Stops the current running program

All these services are available as soon as the node is started whereas on standalone mode or not.
Dependencies - Programs manager

e Niryo_robot_msgs
® python-yaml
e std_msgs

Services files - Programs manager

ExecuteProgram

bool execute_from_string

string name
string code_string

niryo_robot_programs_manager/ProgramLanguage language

int16 status
string message
string output

GetProgram

string name

niryo_robot_programs_manager/ProgramLanguage language

int32 status
string message

string code
string description

GetProgramAutorunInfos

int32 status
string message

niryo_robot_programs_manager/ProgramLanguage language
string name

Mode
int8 ONE_SHOT = 1
int8 LOOP = 2

int8 mode

GetProgramList

niryo_robot_programs_manager/ProgramLanguage language

string[] programs_names

niryo_robot_programs_| /ProgramL ist[] list_of_language_list
string[] programs_description

ManageProgram

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://pyyaml.org/wiki/PyYAMLDocumentation
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html

Ned ROS Documentation (v4.1.1)

Command

int32 SAVE = 1
int32 DELETE = -1
int8 cmd

Program Name
string name

- Creation
niryo_robot_programs_manager/ProgramLanguage language

string code
string description

bool allow_overwrite

int16 status
string message

SetProgramAutorun

Program language
niryo_robot_programs_manager/ProgramLanguage language

Program Name
string name

Mode

int8 DISABLE = 0
int8 ONE_SHOT = 1
int8 LOOP = 2
int8 mode

int16 status
string message

Messages files - Programs manager

ProgramIsRunning

bool program_is_running
int8 EXECUTION_ERROR = -2
int8 FILE_ERROR = -1

int8 NONE = ©

int8 PREEMPTED = 1

int8 SUCCESS = 2

int8 last_execution_status
string last_execution_msg

ProgramLanguage

int8 NONE = -1
int8 ALL = 0

Runnable

int8 PYTHON2 = 1
int8 PYTHON3 = 2

Not Runnable
int8 BLOCKLY = 66

int8 used

ProgramLanguageList

niryo_robot_programs_manager/ProgramLanguage[] language_list

ProgramList

string[] programs_names
niryo_robot_programs_r /ProgramL ist[] list_of_language_list
string[] programs_description

Niryo_robot_rpi

This package deals with Raspberry Pi related stuff (Button, fans, I/0, leds, ...).
Raspberry Pi Node

The ROS Node manages the following components:

® Physical top button: executes actions when the button is pressed.

e Digital I/0 panel: gets commands and sends the current state of digital 1/0s. Also controls tools like the Electromagnet.

® Analog I/0 panel: gets commands and sends the current state of analog 1/0s.

® End Effector I/0 panel: gets commands and sends the current state of the digital 1/0s of the end effector panel on Ned2. Also controls tools like the
Electromagnet.

® Robot fans.

® Led: sets the LED color.

e Shutdown Manager: shutdown or reboot the Raspberry.

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

® ROS log: can remove all previous logs on start_up to prevent a lack of disk space in the long run (SD cards do not have infinite storage).
It belongs to the ROS namespace: /niryo_robot_rpi/ .

Note that this package should not be used when you are using Ned ROS stack on your computer in simulation mode. Executes actions when the button is
pressed.

Publisher - Raspberry Pi

RPI Package s Publishers

Name Message Type Description
pause_state PausePlanExecution Publishes the current execution state launched when button is pressed
/niryo_robot/blockly/save_current_point std_msgs/Int32 Publishes current point when user is in Blockly page to save block by pressing button
/niryo_robot/rpi/is_button_pressed std_msgs/Bool Publishes the button state (true if pressed)
digital_io_state DigitallOState Publishes the digital I/Os state by giving for each it's pin / name / mode / state
analog_io_state AnaloglOState Publishes the analog 1/0s state by giving for each it's pin / name / mode / state
/niryo_robot/rpi/led_state std_msgs/Int8 Publishes the current LED color
ros_log_status LogStatus Publishes the current log status (log size / available disk / boolean if should delete ros log on
startup)
Services - Raspberry Pi
RPI Services
Name Message Type Description
shutdown_rpi Setint Shutdowns the Raspberry Pi
/niryo_robot/rpi/change_button_mode Setint Changes top button mode (autorun program, blockly, nothing, ...)
get_analog_io GetAnaloglO Gets analog 10 state list
get_digital io GetDigitallO Gets digital 10 state list
set_analog_io SetAnaloglO Sets an analog |0 to the given value
set_digital_io SetDigitallO Sets a digital 10 to the given value
set_digital io_mode SetDigitallO Sets a digital 10 to the given mode
set_led_state std_msgs/Setint Sets LED state
set_led_custom_blinker LedBlinker Sets the LED in blink mode with the color given
purge_ros_logs Setint Purges ROS log
set_purge_ros_log_on_startup Setint Modifies the permanent settings that tell if the robot should purge its ROS log at each boot

Dependencies - Raspberry Pi

® std_msgs
actionlib_msgs

® sensor_msgs

® Niryo_robot_msgs

e Niryo_robot_arm_commander
Adafruit-GP10==1.0.3
Adafruit-Purel0==1.0.1
Adafruit-BBIO==1.0.9
Adafruit-ADS1x15==1.0.2
® board==1.0

® smbus==1.1.post2

® smbus2==0.4.1

® spidev==3.5

Services files - Raspberry Pi

ChangeMotorConfig (Service)

int32[] can_required_motor_id_list
int32[] dxl_required_motor_id_list

int32 status
string message

GetAnaloglO (Service)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/msg/Int32.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Int8.html
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/actionlib_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/sensor_msgs/html/index-msg.html
https://github.com/adafruit/Adafruit_Python_GPIO
https://github.com/adafruit/Adafruit_Python_PureIO/tree/1.0.1
https://github.com/adafruit/adafruit-beaglebone-io-python/tree/1.0.9
https://github.com/adafruit/Adafruit_Python_ADS1x15
https://github.com/tjguk/dojo-board
https://i2c.wiki.kernel.org/index.php/I2C_Tools
https://github.com/kplindegaard/smbus2/tree/0.4.1
https://github.com/doceme/py-spidev

Ned ROS Documentation (v4.1.1)

string name

int32 status
string message

floaté4 value

GetDigitallO (Service)

string name
int32 status
string message

bool value

LedBlinker (Service)

uint8 LED_OFF = 0@

uint8 LED_BLUE = 1

uint8 LED_GREEN = 2
uint8 LED_BLUE_GREEN = 3
uint8 LED_RED = 4

uint8 LED_PURPLE = 5
uint8 LED_RED_GREEN = 6
uint8 LED_WHITE = 7

bool activate

uint8 frequency # between 1hz and 100Hz
uint8 color

float32 blinker_duration # 0 for infinite

int32 status
string message

SetDigitallO (Service)

string name
bool value

int32 status
string message

SetAnalogIO (Service)

string name
float64 value

int32 status
string message

SetIOMode (Service)

string name
int8 OUTPUT = @
int8 INPUT = 1

int8 mode

int32 status
string message

SetPullup (Service)

string name
bool enable

int32 status
string message

Messages files - Raspberry Pi

AnalogIO

string name
floaté4 value

AnalogIOState (Topic)

niryo_robot_rpi/AnalogIO[] analog_inputs
niryo_robot_rpi/AnalogIO[] analog_outputs

DigitallO

string name
bool value

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

DigitalIOState (Topic)

niryo_robot_rpi/DigitalIO[] digital inputs
niryo_robot_rpi/DigitalIOo[] digital outputs

LogStatus (Topic)

std_msgs/Header header

in MB

int32 log_size

int32 available disk_size
bool purge_log_on_startup

Niryo_robot_sound
This package deals with the sound of the robot.

Sound Node

The ROS Node is made of services to play, stop, import and delete a sound on the robot. It is also possible to set the volume of the robot.

It belongs to the ROS namespace: /niryo_robot_sound/ .

Parameters - Sound

Here is a list of the different parameters that allow you to adjust the default settings of the robot and the system sounds.

Name
default_volume
default_volume_simulation
min_volume
max_volume
volume_file_ path

volume_file_path_simulation

Name
path_user_sound
path_user_sound_simulation
path_robot_sound
robot_sounds/error_sound
robot_sounds/turn_on_sound
robot_sounds/turn_off_sound
robot_sounds/connection_sound
robot_sounds/robot_ready_sound

robot_sounds/calibration_sound

State soundss
State Description
Booting Sound played while booting
Ready Sound played when the robot is ready after booting
Calibration Sound played at start of calibration
Connected Notify of a connection to Niryo Studio
Reboot Sound played at start of a motor reboot
Warn Sound played when a warning occurs
Error Sound played when a robot/motor/raspberry/program/overheating error occurs
Shutdown Sound played at shutdown

Publisher - Sound

Parameters of the volume Sound component

Description
Default volume on the real robot
Default volume in simulation
Minimum volume of the robot

Maximum volume of the robot

File where the volume of the real robot set by the user is stored

File where the volume in simulation set by the user is stored

Peramerers of the Sound component
Description
Default volume on the real robot
Default volume in simulation
Minimum volume of the robot
Sound played when an error occurs
Sound played at the start-up of the robot
Sound played at shutdown
Sound played an Niryo Studio connection
Sound played when the robot is ready

Sound played at start of calibration

Default value
100
10
0
200
“~/niryo_robot_saved_files/robot_sound_volume.txt”

“~/.niryo/simulation/robot_sound_volume.txt”

Default value
“~/niryo_robot_saved_files/niryo_robot_user_sounds”
“~/.niryo/simulation/niryo_robot_user_sounds”
“niryo_robot_state_sounds”
error.wav
booting.wav
stop.wav
connected.wav
ready.wav

calibration.wav

Sound
Your browser does not support the audio element.
Your browser does not support the audio element.
Your browser does not support the audio element.
Your browser does not support the audio element.
Your browser does not support the audio element.
Your browser does not support the audio element.
Your browser does not support the audio element.

Your browser does not support the audio element.

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

Name
/niryo_robot_sound/sound

/niryo_robot_sound/volume

Sound Package's Publishers

Message Type Description

std_msgs/String Publisesh the sound being played

std_msgs/UInt8 Publishes the volume of the robot

/niryo_robot_sound/sound_database SoundList Publishes the sounds (and their duration) on the robot
Services - Sound
Sound Services
Name Message Type Description
/niryo_robot_sound/play PlaySound Plays a sound from the robot database
/niryo_robot_sound/stop Trigger Stops the sound being played
/niryo_robot_sound/set_volume Setint Sets the volume percentage between 0 and 200%
/niryo_robot_sound/text_to_speech TextToSpeech Pronouncses a sentence via GTTS
/niryo_robot_sound/manage ManageSound Stops a sound being played

Subscribers - Sound

Sound Package subscribers

Topic name Message type Description

/niryo_robot_status/robot_status RobotStatus Retrieves the current robot status, and controls the sound accordingly (see Niryo_robot_status section)

/niryo_studio_connection std_msgs/Empty Catches Niryo Studio’s connection to make a sound.

Dependencies - Sound

e std_msgs
® niryo_robot_msgs
® niryo_robot_status

Services & Messages files - Sound

SoundList (Message)

niryo_robot_sound/SoundObject[] sounds

SoundObject (Message)

string name
float64 duration

ManageSound (Service)

string sound_name
int8 ADD = 1

int8 DELETE = 2
int8 action

Data to add a new sound
string sound_data

int32 status
string message

PlaySound (Service)

string sound_name

float64 start_time_sec
float64 end_time_sec #if 0 or if end_time_sec>sound_duration the entire sound will be played

bool wait_end

int32 status
string message

TextToSpeech (Service)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/msg/String.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/UInt8.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Empty.html
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html

Ned ROS Documentation (v4.1.1)

string text # < 100 char

int8 ENGLISH = 0
int8 FRENCH = 1
int8 SPANISH = 3
int8 MANDARIN = 4
int8 PORTUGUESE = 5
int8 language

bool success

string message

Sound API functions
In order to control the robot more easily than calling each topics & services one by one, a Python ROS Wrapper has been built on top of ROS.

For instance, a script playing sound via Python ROS Wrapper will look like:

from niryo_robot_led_ring.api import SoundRosWrapper

sound = SoundRosWrapper ()
sound.play(sound.sounds[0])

This class allows you to control the sound of the robot via the internal API.
List of functions subsections:

® Play sound
e Sound database

Play sound

class SoundRosWrapper (hardware_version="ned2', service_timeout=1)
play(sound_name, wait_end=True, start_time_sec=0, end_time_sec=0)

Play a sound from the robot If failed, raise NiryoRosWrapperException

Parameters: ® sound_name (str) - Name of the sound to play
® start_time_sec (float) - start the sound from this value in seconds
e end_time_sec (float) - end the sound at this value in seconds

wait_end (bool) - wait for the end of the sound before exiting the function

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

set_volume(sound_volume)
Set the volume percentage of the robot. If failed, raise NiryoRosWrapperException
Parameters: sound_volume (int) - volume percentage of the sound (0: no sound, 100: max sound)
Returns: status, message

Return type: (int, str)

stop()

Stop a sound being played. If failed, raise NiryoRosWrapperException
Returns: status, message

Return type: (int, str)

say(text, language=0)

Use gtts (Google Text To Speech) to interpret a string as sound Languages available are: - English: 0 - French: 1 - Spanish: 2 - Mandarin: 3 - Portuguese: 4
Parameters: ® text (string) - text to speek < 100 char
e language (int) - language of the text
Returns: status, message

Return type: (int (https://docs.python.o

3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Sound database

class SoundRosWrapper (hardware_version="ned2', service_timeout=1)
sounds

Get sound name list

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Ned ROS Documentation (v4.1.1)

Returns: list of the sounds of the robot

Return type: list[string]

delete_sound(sound_name)

Delete a sound on the RaspberryPi of the robot. If failed, raise NiryoRosWrapperException
Parameters: sound_name (str) - name of the sound which needs to be deleted
Returns: status, message

Return type: (int, str)

import_sound(sound_name, sound_data)

Delete a sound on the RaspberryPi of the robot. If failed, raise NiryoRosWrapperException

Parameters: ® sound_name (str) - name of the sound which needs to be deleted
® sound_data (str) - String containing the encoded data of the sound file (wav or mp3)

Returns: status, message

Return type: (int (https thon /thon.o

//functions.html#int), str (htt

get_sound_duration(sound_name)

Parameters: sound_name (str) - name of sound

Returns: sound duration in seconds

Return type: float

Niryo_robot_status

Robot status Node

The ROS Node is listening to the topics of the robot to deduce the current state of the robot. It manages the status of the robot, the status of the logs and informs

about the overheating of the Raspberry Pl and the out of limit joints.

It belongs to the ROS namespace: /niryo_robot_status/ .

Niryo Robot Status Table
Name Description
SHUTDOWN The robot is being shut down
FATAL_ERROR ROS crash

MOTOR_ERROR Motor voltage error, overheating, overload

COLLISION Arm collision detected

USER_PROGRAM_ERROR User program error

UNKNOWN Node not initialized
BOOTING ROS a and the Raspberry are booting up
UPDATE Robot update in progress

CALIBRATION_NEEDED New calibration requested

CALIBRATION_IN_PROGRESS

Calibration in progress

LEARNING_MODE

Free motion disabled, the torques are enabled

STANDBY))
and no user program is running

A single motion or jog is being processed
MOVING ; .
and no user program is running

RUNNING_AUTONOMOUS

Free motion enabled, the torques are disabled

A user program is running and the torques are enabled

3/library/stdtypes.html#str))

Returns the duration in seconds of a sound stored in the robot database raise SoundRosWrapperException if the sound doesn't exists

Troubleshoot

Please restart the robot

Check the error code on Niryo Studio.
Restart the robot and check the wiring.
If the problem persists, contact customer service

Restart your movement or switch to learning mode to
remove this error.

Launch a movement or switch to learning mode to
remove this error.

If the startup seems to timeout, restart the robot
electrically.
If the problem persists, update the robot with ssh,
change the SD card or contact customer service.

Just wait and be patient :)
Run a new calibration before processing any movement.

If the calibration fails or takes longer than 30
seconds.
The status will return to CALIBRATION_NEED.

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Ned ROS Documentation (v4.1.1)

Name

RUNNING_DEBUG

PAUSE

LEARNING_MODE_AUTONOMOUS

Description Troubleshoot

A debug procedure is running A short press on the top button cancels it.

A short press on the top button resumes the program,
a long press (on Ned2) or a double press (on Ned and
One)
cancels the program execution.

User program error

After 30 seconds, the program stops automatically.

A user program is running and the torques are disabled

Robot status chart

UNKNOWN

BOOTING

CALIBRATION_NEEDED

CALIBRATION_IN_PROGRESS

STANDBY

A

‘ RUNNING_AUTONOMOUS

‘ MOVING ‘

‘ PAUSE ‘ ‘ LEARNING_MODE ‘
AUTONOMOUS

LEARNING_MODE

b |
_—

COLLISION USER_PROGRAM_ERROR

e N
_______ NN PR A,
~ -
B v i FATAL_ERROR MOTOR_ERROR Segrm-m--- '
(& J
i
L
L}
L}
L
Nt 4
N
\
LED ring color
SHUTDOWN

From any
state

— - :
From a specific state

Publisher - Robot Status

Name

/niryo_robot_status/robot_status

Services - Robot Status

Name

/niryo_robot_status/advertise_shutdown

Subscribers - Robot Status

Niryo Robot Status Diagram

Robot Status Package s Publishers

Message Type Latch Mode Description
RobotStatus True Publish the robot, log, overheating and out of bounds status.
Robot Status Services
Message Type Description

Trigger Notify of a shutdown request

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

Topic name
/niryo_robot_hardware_interface/hardware_status
niryo_robot_rpi/pause_state
/niryo_robot_arm_commander/is_active
/niryo_robot_arm_commander/is_debug_motor_active
/niryo_robot/jog_interface/is_enabled
/niryo_robot_programs_manager/program_is_running
/niryo_robot_user_interface/is_client_connected
/niryo_robot/learning_mode/state
/niryo_robot_arm_commander/collision_detected
/joint_states

/ping_pyniryo

Dependencies - Robot Status

e std_msgs

® sensor_msgs

® niryo_robot_msgs

® niryo_robot_programs_manager
® niryo_robot_arm_commander

Messages files - Robot Status

RobotStatus

int8 UPDATE=-7

int8 REBOOT=-6

int8 SHUTDOWN=-5
int8 FATAL_ERROR=-4
int8 MOTOR_ERROR=-3
int8 COLLISION=-2
int8 USER_PROGRAM_ERROR=-1
int8 UNKNOWN=0

int8 BOOTING=1

int8 REBOOT_MOTOR=2
int8 CALIBRATION_NEEDED=3

int8 CALIBRATION_IN_PROGRESS=4
int8 LEARNING_MODE=5
int8 STANDBY=6

int8 MOVING=7

int8 RUNNING_AUTONOMOUS=8 # User program is running
int8 RUNNING_DEBUG=9 # Debug program is running
int8 PAUSE=10 # User program paused

int8 LEARNING_MODE_AUTONOMOUS=11
int8 LEARNING_TRAJECTORY = 12
int8 REBOOT_MOTOR=13

Node crash

Robot is booting

Torque ON

int8 robot_status
string robot_status_str
string robot_message

int8 FATAL=-3
int8 ERROR=-2
int8 WARN=-1
int8 NONE=0

int8 logs_status
string logs_status_str

string logs_message

bool out_of_bounds
bool rpi_overheating

Niryo_robot_system_api_client

This packages handle the flask server requests to manage:

® Robot name
e Wifi settings
e Ethernet settings

Publisher - System API Client

System APl Client Package s Publishers

Name

/niryo_robot/wifi/status

Services - System API Client

Robot Status Package subscribers

Message type
HardwareStatus
PausePlanExecution
std_msgs/Bool
std_msgs/Bool
std_msgs/Bool
ProgramlsRunning
std_msgs/Bool
std_msgs/Bool
std_msgs/Bool
sensor_msgs/JointState

std_msgs/Bool

Electrical/overload or disconnected motor error

Moving with NiryoStudio interface or ros topics without user program

User program is running + Learning mode activated

Message Type

WifiStatus

Description
Detection of a motor or end effector panel error, raspberry overheating

Detection of the pause state

Detection of a motion
Detection of a debug procedure
Detection of a jog motion
Detection of a user program
Detection of a pyniryo user
Detection of the free motion mode
Detection of collision
Get the joint state in order to detect an out of bounds

Detection of a pyniryo2 user

Description

Publish the current wifi status

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/sensor_msgs/html/msg/JointState.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/sensor_msgs/html/index-msg.html

Ned ROS Documentation (v4.1.1)

Systermn AP/ Client Services

Name Message Type Description
/niryo_robot/wifi/set_robot_name SetString Change the robot name
/niryo_robot/wifi/manage ManageWifi Change the wifi hotspot mode
/niryo_robot/ethernet/manage ManageEthernet Change the ethernet setup (ip address, netmask, gateway, dhcp) based on nmcli interface.

Services files - System API Client

ManageEthernet (Service)

int8 STATIC
int8 AUTO =
int8 CUSTOM

[IRNIT]

int8 profile

Only for the custom profile

string ip # ex: '192.168.1.73'

string mask # ex: '255.255.255.0'

string gateway # ex: '192.168.1.1'

Optional

string dns # ex: '8.8.8.8 4.4.4.4' separated by spaces

int32 status
string message

ManageWifi (Service)

int8 HOTSPOT = @
int8 RESTART = 1
int8 DEACTIVATE = 2
int8 RECONNECT = 3

int8 cmd
int32 status
string message

Messages files - System API Client

WifiStatus (Message)

int8 UNKNOWN (¢}

int8 HOTSPOT = 1

int8 DISABLED = 2
int8 CONNECTED = 3
int8 DISCONNECTED = 4

int8 status

Niryo robot tools commander
Provides functionalities to control end-effectors and accessories for Ned.
This package allows to manage the TCP (Tool Center Point) of the robot. If the functionality is activated, all the movements (in Cartesian coordinates [x, y, z, roll,
pitch, yaw]) of the robot will be performed according to this TCP. The same program can then work with several tools by adapting the TCP transformation to them.
By default this feature is disabled, but can be enabled through the robot services.
Tools Commander node
The ROS Node is made of services to equip tool, an action server for tool command and topics for the current tool or the tool state.
It belongs to the ROS namespace: /niryo_robot_tools_commander/ .
Action server - tools
Jools Package Action Server

Name Message Type Description

action_server ToolAction Command the tool through an action server

Publisher - tools

Tools Package Publishers

Name Message Type Description
current_id std_msgs/Int32 Publishes the current tool ID
tcp TCP Publishes if the TCP (Tool Center Point) is enabled and transformation between the tool_link and the TCP

Services - tools

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/msg/Int32.html

Ned ROS Documentation (v4.1.1)

Tools Package Services
Name Message Type Description
update_tool std_srvs/Trigger Pings/scans for a dxI motor flashed with an ID corresponding to a tool and equip it (if found)
equip_electromagnet Setint Equips the electromagnet with the motor ID given as parameter

Enables or disablse the TCP (Tool Center Point) functionality.
enable_tcp SetBool When we activate it, the transformation will be the last one saved since the robot started.

By default it will be the one of the equipped tool.
set_tcp SetTCP Activates the TCP (Tool Center Point) functionality and defines a new TCP transformation.

reset_tcp std_srvs/Trigger Resets the TCP transformation. By default it will be the one of the equipped tool.

Dependencies - tools

e Niryo_robot_msgs
e std_msgs
® geometry_msgs

Action files - tools

ToolAction (Action)

goal
niryo_robot_tools_commander/ToolCommand cmd
result

int32 status

string message

feedback

int32 progression

Messages files - tools

ToolCommand (Message)

Gripper
int8 OPEN_GRIPPER = 1
int8 CLOSE_GRIPPER = 2

Vacuump pump
int8 PULL_AIR_VACUUM_PUMP = 10
int8 PUSH_AIR_VACUUM_PUMP 11

Tools controlled by digital I/0s
int8 SETUP_DIGITAL_IO = 20

int8 ACTIVATE_DIGITAL_IO = 21

int8 DEACTIVATE_DIGITAL_IO = 22

uint8 cmd_type

Gripperl= 11, Gripper2=12, Gripper3=13, VaccuumPump=31, Electromagnet=30
int8 tool_id

1if gripper Ned1/One
uint16 speed

if gripper Ned2
uint8 max_torque_percentage
uint8 hold_torque_percentage

1f vacuum pump or electromagnet grove
bool activate

if tool is set by digital outputs (electromagnet)
string gpio

TCP (Message)

bool enabled

geometry_msgs/Point position
niryo_robot_msgs/RPY rpy
geometry _msgs/Quaternion orientation

Services files - tools

SetTCP (Service)

geometry_msgs/Point position

#0nly one of the two is required

#If both are filled, the quaternion will be chosen by default
niryo_robot_msgs/RPY rpy

geometry_msgs/Quaternion orientation

int32 status

string message

Niryo_robot_user_interface

This packages handle high-level user interface commands coming TCP requests and also system-related features like 1/0s, LED and fans.

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_srvs/html/srv/Trigger.html
http://docs.ros.org/melodic/api/std_srvs/html/srv/Trigger.html
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/geometry_msgs/html/index-msg.html

Ned ROS Documentation (v4.1.1)

You can find their documentations here:

® TCP Server
Use Ned's TCP server

Ned is permanently running a TCP Server to acquire requests. This server is built on top of theNed Python ROS Wrapper (index.html#document-
source/ros_wrapper).

It offers a simple way for developers to create programs for robot and to control them via remote communication on a computer, on a mobile or any device with
network facilities.

Programs can communicate through network TCP with the robots in any language available.

Connection

To access the server, you will have to use to robot’s IP adress and communicate via the port 40001.
Communication

Only one client can communicate with the server (reconnection effective but no multi clients).

The server answers only after the command is done, so it can’t deal with multiple commands at the same time.
Packet convention

General format

For easier usage and easier debugging, the communication is based on JSON format.

Every package have this following shape: <json_packet_size>{<json_content>}<payload> .

The JSON packet size is an unsigned short coded on 2 bytes.

The JSON contains command'’s name & params.

Payload contains heavy data like an image.

Request

Format - Request

As no function requests a payload in input, requests have the following.

Format: <json_packet_size>{'param_list': [<param_1>, <param_2>,], 'command': <command_str>}
Examples - Request

Calibrate auto: {'param_list': ['AUTO'], 'command': 'CALIBRATE'}

Move joints: {'param_list': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'command': 'MOVE_JOINTS'}
Answer

Format - Answer

Firstly, answers indicate to the user if its command has been well executed. This is indicated in the JSON by the parameter “status”.
A successful answer will have the format:

{'status': 'OK', 'list_ret_param': [<param_1>, <param_2>,], 'payload_size': <payload_size_int>, 'command': <command_str>}
<payload_str>

An unsuccessful answer will have the format: {'status': 'KO', 'message': <message str>}

Examples - Answer

Calibrate Auto: {'status': 'OK', 'list_ret_param': [], 'payload_size': ©, 'command': 'CALIBRATE'}

Get Pose: {'status': 'OK', 'list_ret_param': [0.2, 0.15, 0.35, 0.5, -0.6, 0.1], 'payload_size': 0, 'command': 'GET_POSE'}
Commands enum for TCP server

class CommandEnum

Enumeration of all commands used

CALIBRATE=0

SET_LEARNING_MODE= 7

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

GET_LEARNING_MODE=2

SET_ARM_MAX_VELOCITY=3

SET_JOG_CONTROL= 4

GET_JOINTS= 10

GET_POSE= 11

GET_POSE_QUAT= 12

MOVE_JOINTS= 20

MOVE_POSE= 21

SHIFT_POSE=22

MOVE_LINEAR_POSE=23

SHIFT_LINEAR_POSE= 24

JOG_JOINTS=25

JOG_POSE= 26

FORWARD_KINEMATICS= 27

INVERSE_KINEMATICS=28

GET_POSE_SAVED= 50

SAVE_POSE= 51

DELETE_POSE= 52

GET_SAVED_POSE_LIST=53

PICK_FROM_POSE= 60

PLACE_FROM_POSE= 61

PICK_AND_PLACE= 62

GET_TRAJECTORY_SAVED= 80

GET_SAVED_TRAJECTORY_LIST= 87

EXECUTE_REGISTERED_TRAJECTORY= 82

EXECUTE_TRAJECTORY_FROM_POSES= 83

EXECUTE_TRAJECTORY_FROM_POSES_AND_JOINTS= 84

SAVE_TRAJECTORY= 85

SAVE_LAST_LEARNED_TRAJECTORY= 86

UPDATE_TRAJECTORY_INFOS= 87

DELETE_TRAJECTORY= 88

CLEAN_TRAJECTORY_MEMORY= 89

GET_SAVED_DYNAMIC_FRAME_LIST=95

GET_SAVED_DYNAMIC_FRAME= 96

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

SAVE_DYNAMIC_FRAME_FROM_POSES= 97

SAVE_DYNAMIC_FRAME_FROM_POINTS= 98

EDIT_DYNAMIC_FRAME= 99

DELETE_DYNAMIC_FRAME= 700

MOVE_RELATIVE= 707

MOVE_LINEAR_RELATIVE= 702

UPDATE_TOOL= 720

OPEN_GRIPPER= 7121

CLOSE_GRIPPER= 7122

PULL_AIR_VACUUM_PUMP= 723

PUSH_AIR_VACUUM_PUMP= 124

SETUP_ELECTROMAGNET= 725

ACTIVATE_ELECTROMAGNET= 726

DEACTIVATE_ELECTROMAGNET= 727

GET_CURRENT_TOOL_ID= 728

GRASP_WITH_TOOL= 729

RELEASE_WITH_TOOL= 730

ENABLE_TCP= 740

SET_TCP= 141

RESET_TCP= 742

TOOL_REBOOT= 745

SET_PIN_MODE= 750

DIGITAL_WRITE= 757

DIGITAL_READ= 7152

GET_DIGITAL_IO_STATE= 153

GET_HARDWARE_STATUS= 7154

ANALOG_WRITE= 755

ANALOG_READ= 756

GET_ANALOG_IO_STATE= 7157

CUSTOM_BUTTON_STATE= 758

SET_CONVEYOR= 780

UNSET_CONVEYOR= 787

CONTROL_CONVEYOR= 782

GET_CONNECTED_CONVEYORS_ID= 783

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

GET_IMAGE_COMPRESSED= 200

GET_TARGET_POSE_FROM_REL= 207

GET_TARGET_POSE_FROM_CAM= 202

VISION_PICK=203

MOVE_TO_OBJECT= 205

DETECT_OBJECT= 204

GET_CAMERA_INTRINSICS=270

SAVE_WORKSPACE_FROM_POSES= 220

SAVE_WORKSPACE_FROM_POINTS= 221

DELETE_WORKSPACE= 222

GET_WORKSPACE_RATIO= 223

GET_WORKSPACE_LIST=224

SET_IMAGE_BRIGHTNESS= 230

SET_IMAGE_CONTRAST= 231

SET_IMAGE_SATURATION= 232

GET_IMAGE_PARAMETERS= 235

PLAY_SOUND= 240

SET_VOLUME= 241

STOP_SOUND= 242

DELETE_SOUND= 243

IMPORT_SOUND= 244

GET_SOUNDS= 245

GET_SOUND_DURATION= 246

SAY= 247

LED_RING_SOLID= 250

LED_RING_TURN_OFF= 257

LED_RING_FLASH= 252

LED_RING_ALTERNATE= 253

LED_RING_CHASE= 254

LED_RING_WIPE= 255

LED_RING_RAINBOW= 256

LED_RING_RAINBOW_CYCLE= 257

LED_RING_RAINBOW_CHASE= 258

LED_RING_GO_UP= 259

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

LED_RING_GO_UP_DOWN= 260

LED_RING_BREATH= 2617

LED_RING_SNAKE= 262

LED_RING_CUSTOM= 263

LED_RING_SET_LED= 264

Niryo_robot_vision
This package is the one dealing with all vision related stuff.
Vision Node

The ROS Node is made of several services to deal with video streaming, object detection... The node is working exactly the same way if you chose to use it on
simulation or reality.

This node can be launched locally in a standalone mode via the command:

roslaunch niryo_robot_vision vision_node_local.launch

Configuration (Frame Per Second, Camera Port, Video Resolution) can be edited in the config file:

e For “standard” Node: niryo_robot_vision/config/video_server_setup.yaml|
e For local Node: niryo_robot vision/config/video_server_setup_local.yaml

It belongs to the ROS namespace: /niryo_robot_vision/ .

Parameters - Vision

Vision Package s Perameters
Name Description
frame_rate Streams frame rate

. . Sets to true if you are using the gazebo simulation.
simulation_mode , o
It will adapt how the node get its video stream

debug_compression_quality Debugs Stream compression quality
stream_compression_quality Streams compression quality
subsampling Streams subsampling factor

Publisher - Vision

Vision Package's Publishers

Name Message Type Description
compressed_video_stream sensor_msgs/Compressedimage Publishes the last image read as a compressed image
video_stream_parameters ImageParameters Publishes the brightness, contrast and saturation settings of the video stream

Services - Vision

Programs manager Services

Name Message Type Description

debug_colors DebugColorDetection Returns an annotated image to emphasize what happened with color detection

debug_markers DebugMarkers Returns an annotated image to emphasize what happened with markers detection
obj_detection_rel ObjDetection Object detection service
start_stop_video_streaming SetBool Starts or stops video streaming

take_picture TakePicture Saves a picture in the specified folder
set_brightness SetlmageParameter Sets the brightness of the video stream

set_contrast SetlmageParameter Sets the contrast of the video stream
set_saturation SetlmageParameter Sets the saturation of the video stream

visualization Visualization Add visuals markers of objects detected by the vision kit to rviz

All these services are available as soon as the node is started.

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/sensor_msgs/html/msg/CompressedImage.html

Ned ROS Documentation (v4.1.1)

Dependencies - Vision

e Niryo_robot_msgs
® sensor_msgs

Topics files - Vision

ImageParameters (Topic)

float64 brightness_factor
float64 contrast_factor
float64 saturation_factor

Services files - Vision

DebugColorDetection (Service)

string color

sensor_msgs/CompressedImage img

DebugMarkers (Service)

bool markers_detected
sensor_msgs/CompressedImage img

ObjDetection (Service)

string obj_type

string obj_color

float32 workspace_ratio

bool ret_image

int32 status
niryo_robot_msgs/ObjectPose obj_pose

string obj_type
string obj_color

sensor_msgs/CompressedImage img

TakePicture (Service)

string path

bool success

SetImageParameter (Service)

float64 factor

int32 status
string message

Visualization (Service)

string workspace
bool clearing

int32 status

Niryo_robot_led_ring

This package is the one managing the LED Ring of Ned2.

It is composed of one node, receiving commands and the current robot status, and publishing LED Ring states.
The LED Ring is composed of 30 WS2811 RGB LEDs, controlled by the package with therpi_ws281x library.

LED Ring node

The ROS Node is made to manage the LED Ring state, and to publish its currents status and state on ROS topics. It uses a class implementing several animation (11
for now), allowing to control the LED Ring or to display the current robot status. The LED Ring is also implemented in Rviz.

The LED Ring can either be:

e in ROBOT STATUS mode: the LED is displaying the status of the robot.
® in USER mode: the user can control the LED Ring with the several methods implemented, through

Blockly , Pyniryo or Python ROS Wrapper .

Robot status mode

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/sensor_msgs/html/index-msg.html
https://github.com/rpi-ws281x/rpi-ws281x-python
https://docs.niryo.com/product/niryo-studio/source/blockly_api.html
https://docs.niryo.com/dev/pyniryo/index.html

Ned ROS Documentation (v4.1.1)

When displaying the robot status, the LED Ring has several states which represent different modes and error status. Refer to the following table. The node

subscribes to the ROS topic /niryo_robot_status/robot_status, published by the package RobotStatus

Animation and color
White Breath
Blue Chase
Blue Snake
Blue Breath
3 Yellow Flashing
Green Breath
Solid Green
Green Chase
Orange Breath
Flashing Orange
Solid Orange
1 Purple Flashing
2 Purple Flashing
Flashing Red

Solid Red

User mode

Description
Robot is booting
Calibration is needed
Calibration in progress
Free Motion enabled
Calibration start
Free Motion disabled, torque enabled
Program in progress
Program paused
Program execution error
Collision
Joint out of bounds
New connection form Niryo Studio
Save a robot positions from the ‘Save’ button
Motor error / Raspberry overheating

ROS Crash

Troubleshooting

N/A

Press the Custom button, or launch a calibration

N/A

N/A

N/A

N/A

N/A

Long press on the TOP button to cancel the program, short press to resume

Launch a new action to clear this state

Launch a new action to clear this state

Switch to Free Motion mode to bring the joints within limits.

N/A
N/A
Please check the error on Niryo Studio.

Please restart the robot.

Several animations are implemented to allow the user different ways to control the LED Ring. Refer to the following table. The node receives commands through the
service /niryo_robot_led_ring/set_user_animation (see the service section)

[@Important |

Ned must be in autonomous mode in order to allow the user to control the LED Ring.

Animation Appearance Gif
None LEDs are turned off
Solid Set the whole LED Ring to the same color at once
Flashing Flashes a color according to a frequency

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_none.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_solid.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_flash.gif

Ned ROS Documentation (v4.1.1)

Animation Appearance Gif

Alternate The different colors are alternated one after the other.

Chase Movie theater light style chase animation.

Wipe a color across the LED Ring.

Color Wipe o
Similar to go_up, but LEDs are not turned off at the end.
Rainbow Draws rainbow that fades across all LEDs at once.
Rainbow cycle Draw rainbow that uniformly distributes itself across all LEDs.
Rainbow chase Rainbow chase animation.

I A P B A% IFe

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_alternate.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_chase.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_wipe.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_rainbow.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_rainbow_cycle.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_rainbow_chase.gif

Ned ROS Documentation (v4.1.1)

Animation Appearance

G LEDs turn on like a loading circle until lighting up the whole LED Ring.
o u;
P and are then all turned off at the same time.

Go up and down Like go_up, but LEDs are turned off the same way they are turned on.

Breath

Variation of light intensity to imitate breathing.

Snake Luminous snake that turns around the LED Ring.

Gif

I e e &P

| O Note

When displaying the robot status, the LED Ring commander uses those methods, with the default parameters defined below.

It belongs to the ROS namespace: /niryo_robot_led_ring/ .
Parameters - LED Ring

Firstly, the LED Ring component, controlled with the rpi_ws281x library
parameterizable. Default parameters are set in the led_strim_params.yaml file of the /config folder of the package

Parameters of the Led Ring component

Name Description
led_count Number of LED pixels in the LED Ring
led_pin Raspberry Pi GPIO pin connected to the pixels
It must support PWM.
led_freq_hs LED signal frequency in Hertz
led_dma DMA channel to use for generating signal

led_brightness LEDs brightness. Set to 0 for darkest and 255 for brightest

led_invert True to invert the signal (when using NPN transistor level shift)

led_channel the PWM channel to use

Another configuration file, the led_ring_params.yaml, sets the default parameters of LED Ring animations.

, through the Python class PixelStrip, is

Default value

30

13

800khz

255

True

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_goup.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_goupdown.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_breath.gif
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/ned_led_ring_snake.gif
https://github.com/rpi-ws281x/rpi-ws281x-python

Ned ROS Documentation (v4.1.1)

Psrameters of the LED Ring animations

Name Description Default value

default_flashing_period Default Flashing animation period in seconds 0.25
default_alternate_period Default Alternate animation period in seconds 1
default_chase_period Default Chase animation period in seconds 4
default_colorwipe_period Default Wipe animation period in seconds 5
default_rainbow_period Default Rainbow animation period in seconds 5
default_rainbowcycle_period Default Rainbow cycle animation period in seconds 5
default_rainbowchase_period Default Rainbow chase animation period in seconds 5
default_goup_period Default Go up animation period in seconds 5
default_goupanddown_period Default Go up and down animation period in seconds 5
default_breath_period Default Breath animation period in seconds 4
default_snake_period Default Snake animation period in seconds 15
led_offset Offset ID between the LED with the ID 0 and the ID of the LED at the back of the robot. 8
simulation_led_ring_markers_publish_rate Rviz LED ring markers publishinf rate in simulation mode 20
led_ring_markers_publish_rate Rviz LED ring markers publishing rate on a real robot 5

Services - LED Ring

The ROS node implements one service, designed for the user to control the LED Ring.

LED Ring Peckage services
Name Message type Description

Allows user to control the LED Ring, with implemented animations. A new request
will interrupt the previous one, if still playing. Depending on the wait boolean field

set_user_animation LedUser . .) . o . .
andthe iterations field of the request, the service will either answer immediately after
launching the animation, or wait for the animation to finish to answer.
set_led_color SetLedColor Lights up a LED identified by an ID

Publishers - LED Ring

LED Ring Package publishers
Name Message type Description

Publishes the status of the LED Ring, providing information on the current mode
(displaying robot status or controlled by user if the robot works in AUTONOMOUS mode),

led_ring_status)) o)
the current animation played and the animation color (except for rainbow methods, where

LedRingStatus
the animation color is not defined). Publishes every time at least one field changed.

. . . . o Publishes shapes representing LEDs when Ned is used in simulation with Rviz,
visualization_marker_array visualization_msgs/MarkerArray

as a list of 30 visualization_msgs/Marker of size 30.

Subscribers - LED Ring

LED Ring Psckage subscribers

Topic name Message type Description

/niryo_robot_status/robot_status RobotStatus Retrieves the current robot status, and control LED accordingly (see Niryo_robot_status section)

/niryo_robot/blockly/save_current_point std_msgs/Int32 Catches the ‘Save Point’ action to make the LED ring blink.

/niryo_studio_connection std_msgs/Empty Catches the Niryo Studio connection to make the LED ring blink.

Dependencies - LED Ring
® niryo_robot_msgs

e std_msgs

® visualization_msgs

® rpi_ws281x==4.3.0
Services files - LED Ring

LedUser (Service)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/visualization_msgs/html/msg/MarkerArray.html
http://docs.ros.org/melodic/api/visualization_msgs/html/msg/Marker.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Int32.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Empty.html
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/visualization_msgs/html/index-msg.html
https://github.com/rpi-ws281x/rpi-ws281x-python/tree/v4.3.0

Ned ROS Documentation (v4.1.1)

niryo_robot_led_ring/LedRingAnimation animation_mode

std_msgs/ColorRGBA[] colors
float64 period # Time of 1 iteration in seconds
int16 iterations

The service either wait for the iterations to finish to answer,

or answer immediatly a Success after launching the function of Led Ring control.
if iterations is 0, answer immediatly in any case, because the function never

stops.

bool wait_end

int32 status
string message

SetLedColor (Service)

int8 led_id
std_msgs/ColorRGBA color

int32 status
string message

Messages files - LED Ring

LedRingAnimation (Message)

int32 NONE = -1

int32 SOLID = 1

int32 FLASHING = 2
int32 ALTERNATE = 3
int32 CHASE = 4

int32 COLOR_WIPE = 5
int32 RAINBOW = 6

int32 RAINBOW_CYLE = 7
int32 RAINBOW_CHASE = 8
int32 GO_UP = 9

int32 GO_UP_AND_DOWN = 10
int32 BREATH = 11

int32 SNAKE = 12

int32 CUSTOM = 13

int32 animation

LedRingCurrentState (Message)

Header header
std_msgs/ColorRGBA[] led_ring_colors

LedRingStatus (Message)

int32 ROBOT_STATUS = 1
int32 USER = 2

int32 led_mode
niryo_robot_led_ring/LedRingAnimation animation_mode

std_msgs/ColorRGBA animation_color # except for rainbow related animation

LED Ring API functions
In order to control the robot more easily than calling each topics & services one by one, a Python ROS Wrapper has been built on top of ROS.

For instance, a script turning on the LED Ring via Python ROS Wrapper will look like:

from niryo_robot_led_ring.api import LedRingRosWrapper

led_ring = LedRingRosWrapper ()
led_ring.solid(color=[255, 255, 255])

This class allows you to control the robot via internal API. By controlling, we mean using the LED ring
List of functions subsections:

e Custom animations functions
e Pre-made animations functions

Custom animations functions

class LedRingRosWrapper(hardware_version="ned2’, service_timeout=1)
set_led_color(led id, color)
Lights up an LED in one colour. RGB colour between 0 and 255.

Example:

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

from std_msgs.msg import ColorRGBA

led_ring.set_led_color(5, [15, 50, 255])
led_ring.set_led_color(5, ColorRGBA(r=15, g=50, b=255))

Parameters: e led_id (int) - Id of the led: between 0 and 29

e color (/ist[float] or ColorRGBA) - Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

g/3/

custom(/ed_colors)
Sends a colour command to all LEDs of the LED ring. The function expects a list of colours for the 30 LEDs of the robot.

Example:

led_list = [[i / 30. * 255 , O, 255 - i / 30.] for i in range(30)]
led_ring.custom(led_list)

Parameters: led_colors (/ist[list[float] or ColorRGBA]) - List of size 30 of led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.
Returns: status, message

Return type: (int, str)

Pre-made animations functions

class LedRingRosWrapper (hardware_version="ned2', service_timeout=1)
solid(color, wait=False)
Sets the whole Led Ring to a fixed color.
Example:

from std_msgs.msg import ColorRGBA

led_ring.solid([15, 50, 255])
led_ring.solid(ColorRGBA(r=15, g=50, b=255), True)

Parameters: ® color (/ist[float] or ColorRGBA) - Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.
® wait (bool) - The service wait for the animation to finish or not to answer. For this method, the action is quickly done, so waiting doesn't take a lot of
time.
Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

turn_of f(wait=False)
Turns off all Leds

Example:

led_ring.turn_off()

Parameters: wait (bool) - The service wait for the animation to finish or not to answer. For this method, the action is quickly done, so waiting doesn't take a lot of time.
Returns: status, message

Return type: (int, str)

flashing(color, period=0, iterations=0, wait=False)
Flashes a color according to a frequency. The frequency is equal to 1/ period.

Examples:

from std_msgs.msg import ColorRGBA

led_ring.flashing([15, 50, 255])
led_ring.flashing([15, 50, 255], 1, 100, True)
led_ring.flashing([15, 50, 255], iterations=20, wait=True)

frequency = 20 # Hz
total duration = 10 # seconds
led_ring.flashing(ColorRGBA(r=15, g=50, b=255), 1./frequency, total duration * frequency , True)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Ned ROS Documentation (v4.1.1)

Parameters: ® color (/ist[float] or ColorRGBA) - Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.

period (float) - Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) - Number of consecutive flashes. If 0, the Led Ring flashes endlessly.

® wait (bool) - The service wait for the animation to finish all iterations or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

alternate(color_list, period=0, iterations=0, wait=False)
Several colors are alternated one after the other.

Examples:

from std_msgs.msg import ColorRGBA

color_list = [
ColorRGBA(r=15, g=50, b=255),
[255, o, 0],
[o, 255, 0],

]

led_ring.alternate(color_list)
led_ring.alternate(color_list, 1, 100, True)
led_ring.alternate(color_list, iterations=20, wait=True)

Parameters: e color_list (/ist[list[float] or ColorRGBA]) - Led color list of lists of size 3[R, G, B] or ColorRGBA objects. RGB channels from 0 to 255.
period (float) - Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) - Number of consecutive alternations. If O, the Led Ring alternates endlessly.

wait (bool) - The service wait for the animation to finish all iterations or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

chase(color, period=0, iterations=0, wait=False)
Movie theater light style chaser animation.

Examples:

from std_msgs.msg import ColorRGBA

led_ring.chase(ColorRGBA(r=15, g=50, b=255))
led_ring.chase([15, 50, 255], 1, 100, True)
led_ring.chase(ColorRGBA(r=15, g=50, b=255), iterations=20, wait=True)

Parameters: ® color (/ist or ColorRGBA) - Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.
period (float) - Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) - Number of consecutive chase. If 0, the animation continues endlessly. One chase just lights one Led every 3 Leds.
® wait (bool) - The service wait for the animation to finish all iterations or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

wipe(color, period=0, wait=False)
Wipes a color across the LED Ring, light a LED at a time.

Examples:

from std_msgs.msg import ColorRGBA
led_ring.wipe(ColorRGBA(r=15, g=50, b=255))

led_ring.wipe([15, 50, 255], 1, True)
led_ring.wipe(ColorRGBA(r=15, g=50, b=255), wait=True)

Parameters: ® color (/ist[float] or ColorRGBA) - Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.
® period (float) - Execution time for a pattern in seconds. If 0, the default time will be used.
e wait (bool) - The service wait for the animation to finish or not to answer.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

g/3/

rainbow(period=0, iterations=0, wait=False)
Draws rainbow that fades across all LEDs at once.

Examples:

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Ned ROS Documentation (v4.1.1)

led_ring.rainbow()
led_ring.rainbow(5, 2, True)
led_ring.rainbow(wait=True)

Parameters: ® period (float) - Execution time for a pattern in seconds. If 0, the default time will be used.
e iterations (int) - Number of consecutive rainbows. If 0, the animation continues endlessly.
® wait (bool) - The service wait for the animation to finish or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

rainbow_cycle(period=0, iterations=0, wait=False)
Draws rainbow that uniformly distributes itself across all LEDs.

Examples:

led_ring.rainbow_cycle()
led_ring.rainbow_cycle(5, 2, True)
led_ring.rainbow_cycle(wait=True)

Parameters: ® period (float) - Execution time for a pattern in seconds. If 0, the default time will be used.
e jterations (int) - Number of consecutive rainbow cycles. If 0, the animation continues endlessly.
® wait (bool) - The service wait for the animation to finish or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

rainbow_chase(period=0, iterations=0, wait=False)
Rainbow chase animation, like the led_ring_chase method.

Examples:

led_ring.rainbow_chase()
led_ring.rainbow_chase(5, 2, True)
led_ring.rainbow_chase(wait=True)

Parameters: ® period (float) - Execution time for a pattern in seconds. If 0, the default time will be used.
e jterations (int) - Number of consecutive rainbow cycles. If 0, the animation continues endlessly.
® wait (bool) - The service wait for the animation to finish or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

go_up(color, period=0, iterations=0, wait=False)
LEDs turn on like a loading circle, and are then all turned off at once.
Examples:

from std_msgs.msg import ColorRGBA

led_ring.go_up(ColorRGBA(r=15, g=50, b=255))
led_ring.go_up([15, 50, 255], 1, 100, True)
led_ring.go_up(ColorRGBA(r=15, g=50, b=255), iterations=20, wait=True)

Parameters: ® color (/ist[float] or ColorRGBA) - Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.

period (float) - Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) - Number of consecutive turns around the Led Ring. If 0, the animation continues endlessly.
® wait (bool) - The service wait for the animation to finish or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

go_up_down(color, period=0, iterations=0, wait=False)
LEDs turn on like a loading circle, and are turned off the same way.

Examples:

from std_msgs.msg import ColorRGBA

led_ring.go_up_down(ColorRGBA(r=15, g=50, b=255))
led_ring.go_up_down([15, 50, 255], 1, 100, True)
led_ring.go_up_down(ColorRGBA(r=15, g=50, b=255), iterations=20, wait=True)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Ned ROS Documentation (v4.1.1)

Parameters: ® color (/ist[float] or ColorRGBA) - Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.
period (float) - Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) - Number of consecutive turns around the Led Ring. If 0, the animation continues endlessly.

wait (bool) - The service wait for the animation to finish or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.o

ibrary/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

breath(color, period=0, iterations=0, wait=False)
Variation of the light intensity of the LED ring, similar to human breathing.

Examples:

from std_msgs.msg import ColorRGBA

led_ring.breath(ColorRGBA(r=15, g=50, b=255))
led_ring.breath([15, 50, 255], 1, 100, True)
led_ring.breath(ColorRGBA(r=15, g=50, b=255), iterations=20, wait=True)

Parameters: e color (/ist[float] or ColorRGBA) - Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.
period (float) - Execution time for a pattern in seconds. If 0, the default time will be used.

iterations (int) - Number of consecutive turns around the Led Ring. If 0, the animation continues endlessly.
® wait (bool) - The service wait for the animation to finish or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

snake(color, period=0, iterations=0, wait=False)
A small coloured snake (certainly a python :D) runs around the LED ring.

Examples:

from std_msgs.msg import ColorRGBA

led_ring.snake(ColorRGBA(r=15, g=50, b=255))
led_ring.snake([15, 50, 255], 1, 100, True)
led_ring.snake(ColorRGBA(r=15, g=50, b=255), iterations=20, wait=True)

Parameters: e color (/ist[float] or ColorRGBA) - Led color in a list of size 3[R, G, B] or in an ColorRGBA object. RGB channels from 0 to 255.
period (float) - Execution time for a pattern in seconds. If 0, the default duration will be used.

iterations (int) - Number of consecutive turns around the Led Ring. If 0, the animation continues endlessly.
wait (bool) - The service wait for the animation to finish or not to answer. If iterations is 0, the service answers immediately.

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Low Level Packages
In this section, you will have access to all information about each Niryo robot's ROS hardware stack packages, dedicated to low-level interfaces
Niryo Robot Hardware Interface

This package handles packages related to the robot’s hardware.
It launches hardware interface nodes, motors communication and driver.

Ned &
0 One
HARDWARE INTERFACE]
|
?:tzmr [injt:irr;':ca J (in;r::}illsca J [Em

) (p) (crumerr)

Globs/ overview of hardware stack packages organization.
Hardware interface Node
This node has been conceived to instantiate all the interfaces we need to have a fully functional robot.

Among those interfaces we have:

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/hardware_stack_nodes.png

Ned ROS Documentation (v4.1.1)

e Conveyor Interface

Joints Interface

Tools Interface

Cpu Interface

e End Effector Interface (Ned2 only)
e Can Driver (Ned and One Only)
Ttl Driver

It belongs to the ROS namespace: /niryo_robot_hardware_interface/ .

Parameters
Hardware Interfoce s Parameters
Name Description
. Publishes rate for hardware status.
publish_hw_status_frequency
Default: 2.0"
. X Publishes rate for software status.
publish_software_version_frequency
Default: 2.0"
Dependencies
® Tools Interface
e Joints Interface
e Conveyor Interface
® CPU Interface
e Niryo_robot_msgs
Services, Topics and Messages
Published topics
Hardware Inferface's Published Topics
Name Message Type Description
hardware_status niryo_robot_msgs/HardwareStatus Motors, bus, joints and CPU status
software version niryo. robot_msgs/SoftwareVersion Software version of the Raspberry Pl and every har?:\(lj;e components (motors, end effector, conveyors and
Services
Hardware Interfoce Package Services
Name Message Type Description
launch_motors_report Trigger Starts motors report
reboot_motors Trigger Reboots motors
stop_motors_report Trigger Stops motors report
Joints Interface
This package handles packages related to the robot’s joints controller.
It provides an interface to ros_control.
Joints interface node
It is instantiated in Niryo Robot Hardware Interface package.

It has been conceived to:
e |nterface robot's motors to joint trajectory controller, fromros_control package.
e (Create a controller manager, from controller_manager package, that provides the infrastructure to load, unload, start and stop controllers.
® Interface with motors calibration.
® |nitialize motors parameters.
It belongs to the ROS namespace: /joints_interface/ .

Parameters

Joints Interface’s default Parameters

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://wiki.ros.org/ros_control
http://wiki.ros.org/ros_control
http://wiki.ros.org/controller_manager

Ned ROS Documentation (v4.1.1)

default.yaml file
Name Description Default value Unit
ros_control_loop_frequency Controls loop frequency. 100 Hz

Joints Interface’s hardware specific Parameters

These parameters are specific to the hardware version (Ned, Niryo One or Ned2). This file comes in a different version for each hardware version. They are located
in a directory of the hardware version name.

Joints_params.yaml file
Name Description Supported Hardware versions

Coint N/id JointN (1,2,3,4,50r6)id Al .
versions
J - Default: -1 (invalid id)

o oint N (1, 2, 3, 4, 5 or 6) motor type among: “stepper”, “xI320", “x1430", “fakeStepper” or “fakeDx|"
joint_N/type ! () P s b fpi PP All versions
etault:

L. Joint N (1, 2, 3, 4, 5 or 6) bus (“ttl" or “can”) .
joint_N/bus - All versions
efault:

calibration_params.yaml file
Name Description Default value Unit Supported Hardware versions

. . . Waiting time between 2 commands during .
calibration_timeout o 30 seconds All versions
the calibration process.

. . X File path where is saved motors calibration /home/niryo/niryo_robot _saved._files .
calibration_file o N.A. All versions
value. /stepper_motor_calibration_offsets.txt

stepper_N/id Stepper N (1, 2 or 3) id -1 (invalid id) N.A. All versions

Stepper N (1, 2 or 3) starting velocity for the
stepper_N/v_start)) 1 0.01 RPM Ned 2 only
acceleration profile

Stepper N (1, 2 or 3) first acceleration for
stepper_N/a_1 . . 0 RPM2 Ned 2 only
the acceleration profile

Stepper N (1, 2 or 3) first velocity for the
stepper_N/v_1 .) 0 0.01 RPM Ned 2 only
acceleration profile

Stepper N (1, 2 or 3) max acceleration for
stepper_N/a_max .) 6000 RPM2 Ned 2 only
the acceleration profile

Stepper N (1, 2 or 3) max velocity for the
stepper_N/v_max)) 6 0.01 RPM Ned 2 only
acceleration profile

Stepper N (1, 2 or 3) max deceleration for
stepper_N/d_max X) 6000 RPM2 Ned 2 only
the acceleration profile

Stepper N (1, 2 or 3) last deceleration for
stepper_N/d_1 K) 0 RPM2 Ned 2 only
the acceleration profile

Stepper N (1, 2 or 3) stop velocity for the
stepper_N/v_stop :) 2 0.01 RPM Ned 2 only
acceleration profile

Stepper N (1, 2 or 3) stall threshold for
which we detect
stepper_N/stall_threshold o 0 N.A. Ned 2 only
the end of the joint course for the

calibration process

Stepper N (1, 2 or 3) direction for the
X X calibration .
stepper_N/direction o . 1 N.A. All versions
(1 = same as motor direction, -1 = against

motor direction)

stepper_N/delay Stepper N (1, 2 or 3) delay 0 milliseconds All versions

dynamixels_params.yaml file
Name Description Unit Supported Hardware versions

- Dynamixel N (1, 2 or 3) offset position for the zero position)
dx1_N/offset_position I Rad All versions
efault: ‘0.0’

o Dynamixel N (1, 2 or 3) home position .
dx1_N/home_position Rad All versions
Default: ‘0.0

. . Dynamixel N (1, 2 or 3) direction (1 = ClockWise, -1 = Counter ClockWise) .
dx1_N/direction — N.A. All versions
efault: "1

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

Name

dx1_N/limit_position_max

dx1_N/limit_position_min

Dynamixel N (1, 2 or 3) Proportional gain of the position PID controller

dx1_N/position_P_gain

Description

Dynamixel N (1, 2 or 3) maximal position allowed
Default: '0.0"

Dynamixel N (1, 2 or 3) minimal position allowed
Default: ‘0.0’

Default: ‘0.0’

Dynamixel N (1, 2 or 3) Integral gain of the position PID controller

dx1_N/position_I_gain

o . Dyi
dx1_N/position_D_gain

Dynamixel N (1, 2 or 3) Proportional gain of the velocity PID controller

dx1_N/velocity P_gain

Default: ‘0.0'

namixel N (1, 2 or 3) Derivative gain of the position PID controller
Default: ‘0.0’

Default: ‘0.0'

Dynamixel N (1, 2 or 3) Integral gain of the velocity PID controller

dx1_N/velocity I gain

dx1_N/FF1_gain

dx1_N/FF2_gain

dx1_N/acceleration_profile

dx1_N/velocity_profile

[*]1 refers to the dedicated motor reference documentation

Name

stepper_N/id

stepper_N/gear_ratio

stepper_N/max_effort

stepper_N/motor_ratio

stepper_N/offset_position

stepper_N/home_position

stepper_N/limit_position_min

stepper_N/limit_position_max

Stepper N (1, 2 or 3) assembly direction of the motor (1 = CW, -1 = CCW)

stepper_N/direction

stepper_N/v_start

stepper_N/a_1

stepper_N/v_1

stepper_N/a_max

stepper_N/v_max

stepper_N/d_max

Default: ‘0.0'

Dynamixel N (1, 2 or 3) Feed Forward velocity Gain
Default: ‘0.0

Dynamixel N (1, 2 or 3) Feed Forward acceleration Gain
Default: ‘0.0'

Dynamixel N (1, 2 or 3) acceleration profile parameter *]
Default: ‘0.0

Dynamixel N (1, 2 or 3) velocity profile parameter
Default: ‘0.0

steppers_params.yaml file
Description

Stepper N (1, 2 or 3) id
Default: -1 (invalid id)

Stepper N (1, 2 or 3) gear ratio
Default: 1

Stepper N (1, 2 or 3) max effort
Default: 0

Stepper N (1, 2 or 3) motor ratio for conversion into radian
Default: 1

Stepper N (1, 2 or 3) offset position to position limit min
Default: 0

Stepper N (1, 2 or 3) Home position of the motor
Default: 0

Stepper N (1, 2 or 3) position limit min of the motor
Default: 0

Stepper N (1, 2 or 3) position limit max of the motor
Default: 0

Default: 1

Stepper N (1, 2 or 3) starting velocity for the acceleration profile
Default: 1

Stepper N (1, 2 or 3) first acceleration for the acceleration profile
Default: 0

Stepper N (1, 2 or 3) first velocity for the acceleration profile
Default: 0

Stepper N (1, 2 or 3) max acceleration for the acceleration profile
Default: 6000

Stepper N (1, 2 or 3) max velocity for the acceleration profile
Default: 6

Stepper N (1, 2 or 3) max deceleration for the acceleration profile
Default: 6000

Unit

Rad

Rad

N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

RPM2

RPM

Supported Hardware versions

Unit

N.A.

N.A.

N.A.

N.A.

Rad

Rad

Rad

Rad

N.A.

RPM

RPM2

RPM

RPM?2

RPM

RPM2

All versions

All versions

All versions

All versions

All versions

All versions

All versions

All versions

All versions

All versions

All versions

Supported Hardware versions

All versions

Ned and One only

Ned and One only

Ned 2 only

All versions

All versions

All versions

All versions

All versions

Ned 2 only

Ned 2 only

Ned 2 only

Ned 2 only

Ned 2 only

Ned 2 only

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#what-is-the-profile

Ned ROS Documentation (v4.1.1)

Name

Stepper N (1, 2 or 3) last deceleration for the acceleration profile

stepper_N/d_1

Stepper N (1, 2 or 3) stop velocity for the acceleration profile

stepper_N/v_stop

Stepper N (1, 2 or 3) stall threshold for which we detect the end of the joint course

stepper_N/stall_threshold

Description

Default: 0

Default: 2

Default:

Unit Supported Hardware versions
RPM2 Ned 2 only
RPM Ned 2 only
N.A. Ned 2 only

The velocity profiles for the Stepper motors (in calibration_params.yaml! and steppers_params.yam| files) can be defined for TTL bus only (thus for Ned2 only). They

are defined according to the following graph:

maotor
stop

acceleration phase

: deceleration phase

acceleration
phase

WA | e

s

O
Py

VSTOP (-

\,02

START

VACTUAL

Dependencies

e hardware_interface
controller_manager
® TTL Driver

e CAN Driver

® Niryo_robot_msgs
e control_msgs

Services, Topics and Messages

Subscribed topics

o

TZEROWAIT

Joints Interface’s Published Topics

Name

niryo_robot_follow_joint_trajectory_controller/follow_joint_trajectory/result

Published topics

Joints Interface’s Published Topics

Name

/niryo_robot/learning_mode/state

Services

Joints Interface Package Services

Name

/niryo_robot/joints_interface/calibrate_motors

/niryo_robot/joints_interface/request_new_calibration

niryo_robot/learning_mode/activate

niryo_robot/joints_interface/steppers_reset_controller

Errors and warning messages

Message Type

Message Type

Setint

Trigger

Trigger

Trigger

std_msgs/Bool

Message Type Description
. S . . Trajectory
:control_actions: " control_msgs/FollowjointTrajectory results from
Action<FollowJointTrajectory>"
controller

Description

Learning mode state

Description
Starts motors calibration - value can be 1 for auto calibration, 2 for manual

Resets motor calibration state to “uncalibrated”. This will allow the user to
ask a new calibration.

Changes learning mode (Free Motion) state. When learning mode is
activated, torques are disabled and the joints can move freely.

Resets the controller

List of Errors and warning messages

Type Message
Error JointHardwarelnterface::init - Fail to add joint, return :
Error JointHardwarelnterface::init - stepper state init failed

Description
The joint is not correctly initialized

The stepper state parameters are not correctly retrieved

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/steppers_velocity_profiles.png
http://wiki.ros.org/hardware_interface
http://wiki.ros.org/controller_manager
http://docs.ros.org/melodic/api/control_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Bool.html

Ned ROS Documentation (v4.1.1)

Type Message Description

Error JointHardwarelnterface::init - dx| state init failed The dynamixel state parameters are not correctly retrieved

Error JointHardwarelnterface::init - Dynamixel motors are not available on CAN The robot wrongly tries to initialize a dynamixel motor for the CAN bus (works only on
Bus TTL)

Error JointHardwarelnterface::init - Fail to reboot motor id The motor failed to reboot. Try rebooting it again

JointHardwarelnterface::init - initialize stepper joint failure, return %d.

WARNING Retrying Failed to initialize a stepper. Will try again up to 3 times
WARNING JointHardwarelnterface::init - add stepper joint failure, return %d. Retrying Failed to add a stepper joint. Will try again up to 3 times
WARNING JointHardwarelnterface::init - init dxl joint failure, return : %d. Retrying Failed to initialize a dynamixel joint. Will try again up to 3 times
WARNING JointHardwarelnterface::init - add dxl joint failure, return : %d. Retrying Failed to add a dynamixel joint. Will try again up to 3 times

Conveyor Interface

This package handles Niryo's Conveyors.

It allows you to control up to two Conveyors at the same time.

Two version of the conveyor exist: The Conveyor Belt, communicating via a CAN bus, and the Conveyor Belt (V2), communicating via a TTL bus. Both of them are
directly compatible for the Ned and One. For Ned2, you will need to change the stepper card of the CAN Conveyor Belt to be able to use it on a TTL port (there is no
CAN port on Ned?2).

Conveyor Interface node (For development and debugging purpose only)

This ROS Node has been conceived to:

e Use the correct low level driver according to the hardware version of the robot.
e |nitialize the Conveyor Interface.

Conveyor Interface core
It is instantiated in Niryo Robot Hardware Interface package.

It has been conceived to:

¢ Interface itself with low level drivers (CAN or TTL for Ned and Niryo One, TTL only for Ned2)
® |nitialize conveyor motors parameters.

e Handle the requests from services to set, control or remove the conveyors.

® Publish conveyor states.

It belongs to the ROS namespace: /niryo_robot/conveyor/ .
Parameters
Conveyor Interface’s Parameters

Name Description

Publishing rate for conveyors state.

ublish_frequenc
P - 4 v Default: 2.0

Type of the motor used.

type
P Default: ‘Stepper’
Protocol of the communication.
protocol
It can be ‘CAN’ (for Ned or One) or ‘TTL' (for Ned or One or Ned 2)
default_id Default id of the conveyor before the connection.
Pool_id_list Id of the conveyor after the connection.
Direction Direction of the conveyor.

Max effort used by the steppers

max_effort (CAN Only) A
efault:

Micro steps used by the Steppers

micro_steps (CAN only) Default: 8
efault:

Published topics - Conveyor interface

Conveyor Interface’s Published Topics
Name Message Type Description

feedback ConveyorFeedbackArray Conveyors states

Services

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

Conveyor Interface Package Services

Name Message Type Description
control_conveyor ControlConveyor Sends a command to the desired Conveyor
ping_and_set_conveyor SetConveyor Scans and sets a new Conveyor or removes a connected Conveyor

Dependencies - Conveyor interface

e std_msgs
® CAN Driver
e TTL Driver

Services & messages files - Conveyor interface

ControlConveyor (Service)

uint8 id
bool control_on
int16 speed

int8 direction

int16 status
string message

SetConveyor (Service)

uint8 cmd
uint8 id

uint8 ADD = 1
uint8 REMOVE = 2

int16 id
int16 status
string message

ConveyorFeedbackArray (Message)

conveyor_interface/ConveyorFeedback[] conveyors

ConveyorFeedback (Message)

#Conveyor id (either 12 or 18)

uint8 conveyor_id

#Conveyor Connection state (if it is enabled)
bool connection_state

Conveyor Controls state : ON or OFF

bool running

Conveyor Speed (1-> 100 %)

int16 speed

Conveyor direction (backward or forward)
int8 direction

Tools Interface
This package handles Niryo's tools.
Tools interface node (For Development and Debugging)

The ROS Node is made to:

e |nitialize Tool Interface with configuration parameters.
e Start ROS stuffs like services, topics.

Tools Interface Core
It is instantiated in Niryo Robot Hardware Interface package.

It has been conceived to:

e |nitialize the Tool Interface.
e Provide services for setting and controlling tools.
e Publish tool connection state.
It belongs to the ROS namespace: /tools_interface/ .
Tool Interface’s default Parameters
default yaml!

Name Description

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html

Ned ROS Documentation (v4.1.1)

Name Description

The frequency where tool interface check and publish the state of the tool connected,
or remove tool if it is disconnected.
Default: 2.0"

check_tool_connection_frequency

Tool Interface’s hardware specific Parameters

These parameters are specific to the hardware version (Ned, One or Ned2). This file comes in a different version for each hardware version, located in a directory of
the hardware version name.

tools_params.yam/

Name Description Supported Hardware versions
. . List of default IDs of each tool supported by Niryo
id_list P Bl All Versions
Default: 111,12,13,30,31]
List of motor tools type
X Default: ‘xI320" for NED and ONE
type_list All Versions
Default: 'xI330" for NED2
Default: ‘fakeDxI' for simulation
. List of tools's name corresponds to ID list and type list above _
name_list All Versions
Default: [“Standard Gripper”, “Large Gripper”, “Adaptive Gripper”, “Vacuum Pump”, “Electromagnet"]’
Dependencies
e std_msgs
® std_srvs
® TTL Driver
e Common
Services, Topics and Messages
Published topics
Jools Interface s Published Topics
Name Message Type Description
/niryo_robot_hardware/tools/current_id std_msgs/Int32 Current tool ID
Services
Tool Interface Package Services
Name Message Type Description
niryo_robot/tools/ping_and_set_dx1l_tool tools_interface/PingDxITool Scans and sets for a tool plugged
niryo_robot/tools/open_gripper tools_interface/OpenGripper Opens the gripper
niryo_robot/tools/close_gripper tools_interface/OpenGripper Closes the gripper
niryo_robot/tools/pull_air_vacuum_pump tools_interface/OpenGripper Pulls air with the vacuum pump
niryo_robot/tools/push_air_vacuum_pump tools_interface/OpenGripper Pushes air with the vacuum pump
niryo_robot/tools/reboot std_srvs/Trigger Reboots the motor of the equipped tool
PingDxITool (Service)
int8 state

tools_interface/Tool tool

ToolCommand (Service)

uint8 id

uint16 position
uint16 speed
int16 hold_torque
int16 max_torque

uint8 state

End Effector Interface

This package handles the End Effector Panel of a robot, it is supported from Ned 2.
It provides services and topics specific to the End Effector Panel in order to be used by a final user.

However, it does not deal with the low level bus communication with the components: this is done in theTTL Driver package.

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html
http://docs.ros.org/melodic/api/std_srvs/html/index-msg.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Int32.html
http://docs.ros.org/melodic/api/std_srvs/html/srv/Trigger.html

Ned ROS Documentation (v4.1.1)

End Effector Interface node (For development and debug)

The ROS Node in End Effector Interface Package is used to:

® Instantiate a TTL Driver manager to communicate with hardware.
e |nitialize End Effector Interface.

End Effector Interface Core
It is instantiated in Niryo Robot Hardware Interface package.

It has been conceived to:

e |nterface with TTL Driver.

® |[nitialize End Effector parameters.

e Retrieve End Effector data from TTL driver.
e Publish the status of buttons.

e Publish the collision detection status.

® Start service on |O State.

It belongs to the ROS namespace: /end_effector_interface/ .

Parameters - End Effector Interface

end._effector_interface s Parameters
Name Description

Id of the End Effector in TTL bus

end_effector_id
Default: 0

Frequency to get the End Effector from driver

check_end_effector_status_frequency Default: 40.0
erault: .|

Button used to activate the FreeMotion mode
button_2__type .
Default: free_drive

Button used to save the actual position of the robot
button_1_ type B
Default: save_position

Custom Button used by users to do something
button_0__type
Default: custom

Type of the End Effector. It can be end_effector or fake_end_effector
hardware_type
Default: end_effector

Published topics - End Effector Interface

end._effectorinferfoce Pockage Published Topics

Name Message Type Description
/niryo_robot_hardware_interface/end_effector_interface/_free_drive_button_state_publisher EEButtonStatus Publishes state of Free Motion Button
/niryo_robot_hardware_interface/end_effector_interface/_save_button_state_publisher EEButtonStatus Publishes state of Save Position Button
/niryo_robot_hardware_interface/end_effector_interface/_custom_button_state_publisher EEButtonStatus Publishes state of Custom Button
/niryo_robot_hardware_interface/end_effector_interface/_digital_out_publisher EEIOState Publishes state of 10 Digital

Services - End Effector Interface

end._effector_interface Package Services
Name Service Type Description
set_ee_io_state SetEEDigitalOut Set up digital output on End Effector
Dependencies - End Effector Interface
e std_msgs
® TTL Driver
e Common

Services & Messages files - End Effector Interface

SetEEDigitalOut (Service)

bool data

bool state

EEButtonStatus (Message)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html

Ned ROS Documentation (v4.1.1)

uint8 HANDLE_HELD_ACTION=0
uint8 LONG_PUSH_ACTION=1
uint8 SINGLE_PUSH_ACTION=2
uint8 DOUBLE_PUSH_ACTION=3
uint8 NO_ACTION=100

uint8 action

EEIOState (Message)

bool digital input
bool digital output

CPU Interface

This package provides an interface for CPU temperature monitoring.

CPU Interface Node (For development and debugging purpose only)

This ROS Node has been conceived to launch the CPU interface in an isolated way.

CPU Interface Core

It is instantiated in Niryo Robot Hardware Interface package.

It has been made to monitor CPU temperature of the Raspberry Pi and automatically shutdown the Raspberry Pi if it reaches a critical threshold. Two thresholds
can be defined via parameters: a warning threshold and a shutdown threshold.

The CPU temperature is read from the Ubuntu system file /sys/class/thermal/thermal_zoneO/temp.
In simulation, the CPU temperature of the computer running the simulation is used, but the threshold are deactivated (no shutdown in case of high temperature).

It belongs to the ROS namespace: /cpu_interface/ .

Parameters
CPU Interface’s Parameters
Name Description
R . Publishes rate for CPU temperature
read_rpi_diagnostics_frequency
Default: ‘0.25
CPU temperature [celsius] threshold before a warn message
temperature_warn_threshold
Default: 75’
CPU temperature [celsius] threshold before shutdown the robot
temperature_shutdown_threshold
Default: ‘85’
Dependencies
e Common

Services, Topics and Messages

None

Common

The Common package defines the common software components of the low level stack. It is split into a model part and a utility part:
- The ‘model’ subpackage defines the model tree needed to keep a virtual state of the robot up to date at any time.

- The ‘util’ subpackage defines cpp interfaces and useful functions

Model

The model subpackage is comprised of:

States

Classes, to represent the virtual state of each hardware component at any moment. The hierarchy allows powerful polymorphism so that we can interpret each
component differently based on the information we need to obtain.

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

common::model::AbstractHarcware ‘

N

common::medel::AbstractMotor common::model::EndEifector
State State

commen::model::JointState

common::model::StepperMotor

‘ common::model::DxIMctorState | State

‘ common::medel: ToolState | | common::model::ConveyorState |

Abstract Hardware State inheritance graph

Enums

Enhanced enums, to keep trace of various enumeration and be able to have useful utilities attached to them (like conversion in string).

commen::medel::AbstractEnum
< HardwareTypeEnum, EHarcwareType >

‘ Gommon::madel::HardwareTypeEnum |

Hardware Type Enum inkeritonce graph

Commands

Classes representing single and synchronize commands, for steppers and dynamixels. They are needed in queues in the ttl_driver and can_driver packages.

Commands graphs
common::model::| Object common::madel::| Object
;l
‘ common::model::1SinglsMotorCmd | commen::model::|Synchrenize
MotorCmdl

commoen::model::AbstractSingle
MotorCmd< ParamType =

‘common::model::Abstract Synchronize
MotorCmds ParamType >

common::medel::SingleMotor common::model::Synchronize
Cmd< ParamType > MotorCmde ParamType >

Single Cmd Sync Cmd

Each type of command is an alias to specified versions of two base template classes: AbstractSynchronizeMotorCmd and AbstractSingleMotorCmd
Util
The util subpackage is comprised of:

e Cpp interfaces, used globally in the stack for polymorphism for instance
e Utility functions usable globally in the stack

Dependencies
This package does not depend on any package. This package is a dependency of the following packages:

e can_driver

® conveyor_interface

e cpu_interface

e end_effector_interface

® joints_interface

® niryo_robot_hardware_interface
tools_interface

e ttl_driver

TTL Driver

This package handles motors which communicate via the protocol TTL.

This package is based on the DXL SDK. It provides an interface todynamixel_sdk.
TTL Driver Node (For only the development and debugging propose)

The ROS Node is made to:

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/classcommon_1_1model_1_1AbstractHardwareState__inherit__graph.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/classcommon_1_1model_1_1HardwareTypeEnum__inherit__graph.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/classcommon_1_1model_1_1ISingleMotorCmd__inherit__graph.png
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/classcommon_1_1model_1_1ISynchronizeMotorCmd__inherit__graph.png
http://wiki.ros.org/dynamixel_sdk

Ned ROS Documentation (v4.1.1)

® |[nitialize TTL Interface.
e Get configuration of motors and add to TTL Interface.

TTL Interface Core
It is instantiated in Niryo Robot Hardware Interface (index.html#document-source/stack/low_level/niryo_robot_hardware_interface) package.

It has been conceived to:

e |nitialize the TTL Interface (Interface used by other packages) and physical bus with the configurations.
e Add, remove and monitor devices.

e Start getting data and sending data on the physical bus.

e Start ROS stuffs like services, topics.

It belongs to the ROS namespace: /niryo_robot/ttl_driver/.

Parameters - TTL Driver

| O Note

These configuration parameters are chosen and tested many times to work correctly. Please make sure that you understand what you do before editing these
files.

77L Driver’s Parameters
Name Description

Frequency of the bus control loop.

ttl _hardware_control_loop_frequency
Default: 240.0"

Writes frequency on the bus.

ttl _hardware_write_frequency
Default: 120.0"

Reads frequency on the bus.

ttl _hardware_read_data_frequency
Default: 120.0"

Reads frequency for device status on the bus.

ttl _hardware_read_status_frequency
Default: ‘0.7

Read frequency for End Effector’s status.

ttl_hardware_read_end_effector_frequency
Default: ‘13.0"

Baudrates of TTL bus

bus_params/Baudrate
Default: ‘1000000’

Name of UART port using

bus_params/uart_device_name
Default: /dev/ttyAMAOQ

Dependencies - TTL Driver
e dynamixel_sdk

® Niryo_robot_msgs

e Common

e std_msgs

Services - TTL Driver

771 Driver Pockage Services

Name Message Type Description
niryo_robot/ttl_driver/set_dxl_leds Setint Controls dynamixel LED
niryo_robot/ttl driver/send_custom_value SendCustomValue Writes data at a custom register address of a given TTL device
niryo_robot/ttl _driver/read_custom_value ReadCustomValue Reads data at a custom register address of a given TTL device
niryo_robot/ttl_driver/read_pid_value ReadPIDValue Reads the PID of dxI motors
niryo_robot/ttl_driver/write_pid_value WritePIDValue Writes the PID for dxl motors
niryo_robot/ttl driver/read_velocity_profile ReadVelocityProfile Reads velocity Profile for steppers
niryo_robot/ttl_driver/write_velocity_profile WriteVelocityProfile Writes velocity Profile for steppers

Services & Messages files - TTL Driver

SendCustomValue (Service)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://wiki.ros.org/dynamixel_sdk
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html

Ned ROS Documentation (v4.1.1)

Check XL-320 and XL-430 reference doc for
the complete register table

uint8 id

int32 value

int32 reg_address
int32 byte_number
int32 status
string message

ReadCustomValue (Service)

Check XL-320 and XL-430 reference doc for
the complete register table

uint8 id

int32 reg_address
int32 byte_number
int32 value

int32 status
string message

ReadPIDValue (Service)

Check XL-XXX motors reference doc for
the complete register table

uint8 id

uint16 pos_p_gain
uint16
uint16

uint16 vel p_gain
uint16 vel i gain

uint16 ffl_gain
uint16 ff2_gain

int32 status
string message

WritePIDValue (Service)

Check XL-XXX motors reference doc for
the complete register table

uint8 id

uint16 pos_p_gain
uint16 pos_i_gain
uint16 pos_d_gain

uint16 vel_p_gain
uint16 vel i _gain

uint16 ffl_gain
uint16 ff2_gain

int32 status
string message

ReadVelocityProfile (Service)

Check stepper ttl reference doc for
the complete register table

uint8 id

float64 v_start

floaté4 a_1
floaté4 v_1

float6é4 a_max
float64 v_max
float64 d_max
float64 d_1

float64 v_stop

int32 status
string message

WriteVelocityProfile (Service)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

Check stepper ttl reference doc for
the complete register table

uint8 id
floaté4 v_start

float64

a1l
float64 v_1

float64 a_max
float64 v_max
float64 d_max
floaté4 d_1

float64 v_stop

int32 status
string message

MotorHardwareStatus (Message)

niryo_robot_msgs/MotorHeader motor_identity

string firmware_version
uint32 temperature
float64 voltage

uint32 error

string error_msg

MotorCommand (Message)

uint8 cmd_type

uint8 CMD_TYPE_POSITION=1
uint8 CMD_TYPE_VELOCITY=2
uint8 CMD_TYPE_EFFORT=3
uint8 CMD_TYPE_TORQUE=4

uint8[] motors_id
uint32[] params

ArrayMotorHardwareStatus (Message)

std_msgs/Header header
ttl _driver/MotorHardwareStatus[] motors_hw_status

CAN Driver

This package provides an interface between high level ROS packages and handler of CAN Bus. It uses the mcp_can_rpi for CAN bus communication.
It is used by only Ned and the Niryo One.

CAN Driver Node (For only the development and debugging propose)

The ROS Node is made to:

® |nitialize CAN Interface.
CAN Interface Core
It is instantiated in Niryo Robot Hardware Interface package.

It has been conceived to:

e |nitialize the CAN Interface and physical bus with the configurations.
® Add, remove and monitor devices on bus.

e Start control loop to get and send data from/to motors.

e Start ROS stuffs like services, topics if they exist.

It belongs to the ROS namespace: /can_driver/ .

Parameters

| O Note

These configuration parameters are set to work with Niryo's robot. Do not edit them.

CAN Driver’s Peramefers
Name Description

Control loop frequency.

can_hardware_control_loop_frequency
Default: “1500.0'

Write frequency.

can_hw_write_frequency Default: 200.0
efault: '200.0"

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

Name Description

Read frequency.

can_hw_read_frequency I
erault: .|

spi channel.

bus_params/spi_channel
Default: ‘0"

Baudrate.

bus_params/spi_baudrate
Default: 1000000

GPIO Interrupt.

bus_params/gpio_can_interrupt
P g9pdo_ o P Default: 25

Dependencies

® MCP CAN rpi

e Niryo_robot_msgs
e Common

e std_msgs

Services, Topics and Messages

StepperCmd (Service)

uint8 cmd_type

uint8 CMD_TYPE_SYNCHRONIZE=5
uint8 CMD_TYPE_RELATIVE_MOVE=6
uint8 CMD_TYPE_MAX_EFFORT=7
uint8 CMD_TYPE_MICRO_STEPS=8
uint8 CMD_TYPE_POSITION_OFFSET=9
uint8 CMD_TYPE_CALIBRATION=10

uint8[] motors_id
int32[] params

bool result

StepperMotorHardwareStatus (Message)

niryo_robot_msgs/MotorHeader motor_identity
string firmware_version
int32 temperature

int32 voltage
int32 error

StepperMotorCommand (Message)

uint8 cmd_type

uint8 CMD_TYPE_POSITION=1
uint8 CMD_TYPE_VELOCITY=2
uint8 CMD_TYPE_EFFORT=3
uint8 CMD_TYPE_TORQUE=4

uint8[] motors_id
int32[] params

StepperArrayMotorHardwareStatus (Message)

std_msgs/Header header
can_driver/StepperMotorHardwareStatus[] motors_hw_status

TTL Debug Tools

This package is a debugging package to setup and access directly to all hardware components on the TTL bus. It provides main functions like ping, scan device and
read/write/syncRead/syncWrite operations on devices.

There are two ways to use this package: directly with the compiled binary, or viaTTL Driver services called
in dedicated scripts.

Ttl debug tool binary
The compiled binary (located ininstall/lib/ttl_debug tools/ttl_debug tools) directly accesses the TTL bus usingDynamixel SDK
third party library. Thus, it cannot be used if the Niryo ROS Stack is already running and you should first stop the robot

stack (sudo service niryo_robot_ros stop)

This tool can be launched via:

rosrun ttl_debug_tools ttl_debug_tools

or

roslaunch ttl_debug_tools ttl_debug_tools

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html

Ned ROS Documentation (v4.1.1)

Parameters - Ttl debug tools

e -help / -h: Prints help message

e -baudrate / -b [Baudrate]: Baudrates (1000000 by default)

® -port/-p [Port]: Sets port

e -id /-i [ID]: Devices ID (-1 by default)

e -ids [IDs]: Lists of devices IDs

® -scan: Scans all devices on the bus

® -ping: Pings specific ID

e -get-register [Addr]: Gets a value from a register, parameters is: register address

o —get-registers [Addr]: Gets list of values from multiple devices at a register address, parameters is: register address

e -get-size [Size]: Size of data to be read with get-register or get-registers, parameters is: size of data in bytes

e -set-register [Addr] [Value] [Size]: Sets a value to a register, parameters are in the order: register address / value / size (in bytes) of the data
® —set-registers [Addr] [Values] [Size]: Sets values to a register on multiple devices, parameters are in the order: register address / list of values / size (in bytes) of
the data

-calibrate: Calibrates all steppers on the bus. It is used in Ned2 only

Scripts

In order to use Ttl debug tools to debug an already running ROS stack, it was necessary to develop another tool. To do so, two python scripts have been developped.
They ensure access to the data on the TTL bus via two services implemented in the package TTL Driver

e read_custom_dx|_value.py : uses service ReadCustomValue to read values from the TTL bus
e send_custom_dx|_value : uses service SendCustomValue to write values to the TTL bus

Niryo robot - Send DXL custom value

It uses a ttl_driver service to send data to a register of a device on the TTL bus when the ROS stack is running. This script can be launched via:

rosrun ttl_debug_tools send_custom_dx1l_value.py

Parameters - Send custom value

e -id [ID]: Device ID

e -address [Addr]: Registers address to modify

e -value [Value]: Value to store at the register address given
® -size [Size]: Size in bytes of the data to write

Niryo robot - Read DXL custom value

It uses a service to read data from a register a device on the TTL bus when the ROS stack is running. This script can be launched via:

rosrun ttl_debug_tools read_custom_dx1l_value.py

Parameters - Read custom value
e —id [ID]: Device ID

e -address [Addr]: Register address to modify
® -size [Size]: Size in bytes of the data to read

CAN Debug Tools
This package offers scripts to debug with Hardware and setup CAN devices. It provides some main functions like setting up the CAN bus and dumping data on bus.
Niryo robot - CAN debug tools

It provides service to dump data on CAN bus. This script can be launched via:

rosrun can_debug_tools can_debug_tools

Parameters - CAN debug tools

e -help / -h: Prints help message

® -baudrate / -b [Baudrate]: Baudrates (1000000 by default)

e -channel / -c [Channel]: Sets channel SPI (0 by default)

e -gpio/-g: GPIO Interrupts for CAN (25 by default)

* —freq/ -f: frequency of control loop to check data (100Hz by default)
e -dump: runs dump service to dump and shows all data found on bus

When you dump data on CAN bus, the result is a table including:

e Number of data’s package
e Status of package

e Control byte

® Datain 8 bytes

Third Parties Packages

In this section, you will have access to all information about each Niryo robot’s ROS hardware stack packages, dedicated to low-level interfaces

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

Dynamixel SDK

This package has been forked from the official [dynamixel_sdk] package

It has been adapted to work on Ned's custom Raspberry Pi 4B shield, using the[wiringPi] library
MCP CAN rpi

Raspberry Pi library for MCP2515 module (CAN bus interface) through SPI GPIOs

Forked from [MCP_CAN] library

The MCP2515 module is a SPI-CAN interface. The MCP_CAN library is using the SPI protocol on Arduino to program and use this module. It has been adapted here
to work with the Raspberry Pi 4 GPIOs, using the SPI functions of the using the [wiringPi] library

One of the main difference is that we don't handle SPI Chip Select PIN. This is already done by the wiringPi library, and all PINs for SPI are already predefined (spi
channel 0 or 1).

To poll the MCP2515 module (to see if there is any data to read), the _digitalRead_ function of wiringPi is used.
Third Parties ROS packages

® ros_core

® moveit

® ros_control

® roscpp

e rosdoc_lite

e roslint

® rostest

Control with Python ROS Wrapper

@ python’

Python Logo

In order to control Ned more easily than calling each topics & services one by one, a Python ROS Wrapper has been built on top of ROS.

For instance, a script realizing a move]J via Python ROS Wrapper will look like:

niryo_robot = NiryoRosWrapper ()
niryo_robot.move_joints(0.1, -0.2, 0.0, 1.1, -0.5, 0.2)

What this code is doing in a hidden way:

® |t generates a RobotMove Action Goal and set it as a joint command with the corresponding joints value.
® Sends goal to the Commander Action Server.

e Waits for the Commander Action Server to set Action as finished.

® Checks if action finished with a success.

In this section, we will give some examples on how to use the Python ROS Wrapper to control Ned, as well as a complete documentation of the functions available
in the Ned Python ROS Wrapper.

O Hint

The Python ROS Wrapper forces the user to write his code directly in the robot, or, at least, copy the code on the robot via a terminal command. If you do not
want that, and run code directly from your computer you can use the python Package PyNiryo

Before running your programs
The variable PYTHONPATH
The Python interpreter needs to have all used packages in the environment variable PYTHONPATH, to do that, you need to have sourced your ROS environment:

e |f you are coding directly on your robot, it is made directly in every terminal.
e |f your are using simulation, be sure to have followed the setup fromUbuntu 18 Installation.

Required piece of code

To run, your program will need some imports & initialization. We give you below the piece of code you must use to make Python ROS Wrapper work:

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://github.com/ROBOTIS-GIT/DynamixelSDK/
http://wiringpi.com/
https://github.com/coryjfowler/MCP_CAN_lib
http://wiringpi.com/
file:///home/niryo/catkin_ws/src/sphinx_doc/_singlehtml/en/_images/python_logo.png

Ned ROS Documentation (v4.1.1)

#!/usr/bin/env python

Imports

from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper"')

niryo_robot = NiryoRosWrapper()

-- YOUR CODE HERE --

You have now everything you need to control the robot through its Python ROS Wrapper. To run a script, simply use the command python my_script.py .
Examples: Basics

In this file, two short programs are implemented & commented in order to help you understand the philosophy behind the Python ROS Wrapper.

| © Danger

If you are using the real robot, make sure the environment around is clear.

Your first move joint

The following example shows a first use case. It's a simple Move].

#1/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper"')

Connecting to the ROS Wrapper & calibrating if needed
niryo_robot = NiryoRosWrapper()
niryo_robot.calibrate_auto()

Moving joint
niryo_robot.move_joints(0.1, -0.2, 0.0, 1.1, -0.5, 0.2)

Code details - First MoveJ

First of all, we indicate to the shell that we are running a Python Script:

#!/usr/bin/env python

Then, we import the API package to be able to access functions:

from niryo_robot_python_ros_wrapper import *

Then, we install a ROS Node in order to communicate with ROS master:

import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper')

We start a NiryoRosWrapper instance:

niryo_robot = NiryoRosWrapper()

Once the connection is done, we calibrate the robot using its calibrate_auto()
function:

niryo_robot.calibrate_auto()

As the robot is now calibrated, we can do a Move Joints by giving the 6 axis positions in radians! To do so, we usemove_joints()

niryo_robot.move_joints(0.1, -0.2, 0.0, 1.1, -0.5, 0.2)

Your first pick and place

For our second example, we are going to develop an algorithm of pick and place:

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

#!/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_robot_example_python_ros_wrapper')

Connecting to the ROS Wrapper & calibrating if needed
niryo_robot = NiryoRosWrapper()
niryo_robot.calibrate_auto()

Updating tool
niryo_robot.update_tool()

Opening Gripper/Pushing Air
niryo_robot.release_with_tool()

Going to pick pose

niryo_robot.move_pose(0.2, 0.1, 0.14, 0.0, 1.57, 0)
Picking

niryo_robot.grasp_with_tool()

Moving to place pose

niryo_robot.move_pose(0.2, -0.1, 0.14, 0.0, 1.57, 0)
Placing !

niryo_robot.release_with_tool()

Code details - first pick and place

First of all, we do the imports and start a ROS Node:

#1/usr/bin/env python

from niryo_robot_python_ros_wrapper import *
import rospy

rospy.init_node('niryo_robot_example_python_ros_wrapper')

Then, create a NiryoRosWrapper instance & calibrate the robot:

niryo_robot = NiryoRosWrapper ()
niryo_robot.calibrate_auto()

Then, we equip the tool with update_tool()

niryo_robot.update_tool()

Now that our initialization is done, we can open the Gripper (or push air from the Vacuum pump)
, g0 to the picking
& then catch an object
!

Opening Gripper/Pushing Air
niryo_robot.release_with_tool()

Going to pick pose

niryo_robot.move_pose(0.2, 0.1, 0.14, 0.0, 1.57, 0)
Picking

niryo_robot.grasp_with_tool()

We now get to the place pose, and place the object.

Moving to place pose

niryo_robot.move_pose(0.2, -0.1, 0.14, 0.0, 1.57, 0)
Placing !

niryo_robot.release_with_tool()

Notes - Basics examples

with release_with_tool()
pose via move_pose()
with grasp_with_tool()

You may not have fully understood how to move the robot and use tools of Ned and that is totally fine because you will find more details on another examples

page!
The important thing to remember from this page is how to import the library & connect to the robot.

Examples: Movement
This document shows how to control Ned in order to make Move Joints & Move Pose.

If you want see more, you can look at API - Joints & Pose

| © Danger

If you are using the real robot, make sure the environment around is clear.

Joints

To do a move), you should pass 6 floats: (1, j2, j3 j4, j5, j6) to the

method move_joints()

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

#!/usr/bin/env python

Imports

from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper"')

niryo_robot = NiryoRosWrapper()
niryo_robot.move_joints(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

To get joints, we use get_joints()

joints = niryo_robot.get_joints()
j1, j2, 33, j4, j5, j6 = joints

Pose

To do a moveP, you should pass 6 floats: (X,

See on this example:

#!/usr/bin/env python

Imports

from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper"')

niryo_robot = NiryoRosWrapper()
niryo_robot.move_pose(0.25, 0.0, 0.25, 0.0, 0.0, 0.0)

To get pose, we use get_pose()

X, Y, z, roll, pitch, yaw = niryo_robot.get_pose()

Examples: Tool action
This page shows how to control Ned's tools via the Python ROS Wrapper.

If you want see more, you can look at API - Tools

Y, z, roll, pitch, yaw)

to

the method move_pose()

| @ Danger

If you are using the real robot, make sure the environment around it is clear.

Tool control

Equip tool

In order to use a tool, it should be mechanically plugged to the robot but also connected software wise.

To do that, we should use the function update_tool()
no argument. It will scan motor connections and set the new tool!

The line to equip a new tool is:

niryo_robot.update_tool()

Grasping

To grasp with any tool, you
e (lose gripper for Grippers.
e Pull Air for Vacuum pump.

® Activate for Electromagnet.

The code to grasp is:

can use the

. This action corresponds to:

which takes

function: grasp_with_tool()

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

#!/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper"')

Connecting to the ROS Wrapper & calibrating if needed
niryo_robot = NiryoRosWrapper()
niryo_robot.calibrate_auto()

Updating tool
niryo_robot.update_tool()

Grasping
niryo_robot.grasp_with_tool()

To grasp by specifying parameters:

#!/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper"')

Connecting to the ROS Wrapper & calibrating if needed
niryo_robot = NiryoRosWrapper()
niryo_robot.calibrate_auto()

Updating tool
tool_used = ToolID.XXX
niryo_robot.update_tool()

if tool_used in [ToolID.GRIPPER_1, ToolID.GRIPPER_2, ToolID.GRIPPER_3, ToolID.GRIPPER_4]:
niryo_robot.close_gripper(speed=500)

elif tool used == ToolID.ELECTROMAGNET 1:
pin_electromagnet = PinID.XXX
niryo_robot.setup_electromagnet (pin_electromagnet)
niryo_robot.activate_electromagnet(pin_electromagnet)

elif tool used == ToolID.VACUUM_PUMP_1:
niryo_robot.pull_air_vacuum_pump()

Releasing

To release with any tool, you can

® Open gripper for Grippers.
® Push Air for Vacuum pump.
e Deactivate for Electromagnet.

The line to release is:

niryo_robot.release_with_tool()

To release by specifying parameters:

#1/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper"')

Connecting to the ROS Wrapper & calibrating if needed
niryo_robot = NiryoRosWrapper()
niryo_robot.calibrate_auto()

Updating tool
tool_used = ToolID.XXX
niryo_robot.update_tool()

if tool_used in [ToolID.GRIPPER_1, ToolID.GRIPPER_2, T00lID.GRIPPER_3, ToolID.GRIPPER_4]:
niryo_robot.open_gripper(speed=500)

elif tool used == ToolID.ELECTROMAGNET 1:
pin_electromagnet = PinID.XXX
niryo_robot.setup_electromagnet (pin_electromagnet)
niryo_robot.deactivate_electromagnet(pin_electromagnet)

elif tool_used == ToolID.VACUUM_PUMP_1:
niryo_robot.push_air_vacuum_pump(tool_used)

Pick & place with tools

use the
. This action corresponds to:

function: release_with_tool()

There are a plenty of ways to realize a pick and place with the ROS Wrapper. Methods will be presented from the lowest to highest level.

Code used will be:

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

Imports
from niryo_robot_python_ros_wrapper import *

gripper_used = ToolID.XXX # Tool used for picking

The pick pose

pick_pose = (0.25, 0., 0.15, 0., 1.57, 0.0)

The Place pose

place_pose = (0., -0.25, 0.1, 0., 1.57, -1.57)

def pick_n_place_version_x(niryo_ned):
-- SOME CODE --
if __pame__ == '__main__':
niryo_robot = NiryoRosWrapper ()
niryo_robot.calibrate_auto()
pick_n_place_version_x(niryo_robot)

First solution: the heaviest

Everything is done by hand:

def pick_n_place_version_1(niryo_ned):
height_offset = 0.05 # Offset according to Z-Axis to go over pick & place poses
gripper_speed = 400

Going Over Object
niryo_ned.move_pose(pick_pose[0], pick_pose[1], pick_pose[2] + height_offset,
pick_pose[3], pick_pose[4], pick_pose[5])
Opening Gripper
niryo_ned.open_gripper(gripper_speed)
Going to picking place and closing gripper
niryo_ned.move_pose(pick_pose[0], pick_pose[1], pick_pose[2],
pick_pose[3], pick_pose[4], pick_pose[5])
niryo_ned.close_gripper(gripper_speed)

Raising
niryo_ned.move_pose(pick_pose[0], pick_pose[1], pick_pose[2] + height_offset,
pick_pose[3], pick_pose[4], pick_pose[5])

Going Over Place pose

niryo_ned.move_pose(place_pose[0], place_pose[1], place_pose[2] + height_offset,
place_pose[3], place_pose[4], place_pose[5])

Going to Place pose

niryo_ned.move_pose(place_pose[0], place_pose[1l], place_pose[2],
place_pose[3], place_pose[4], place_pose[5])

Opening Gripper

niryo_ned.open_gripper(gripper_speed)

Raising

niryo_ned.move_pose(place_pose[0], place pose[1], place pose[2] + height offset,
place_pose[3], place_pose[4], place_pose[5])

Second solution: pick from pose & place from pose functions

We use predefined functions:

def pick_n_place_version_3(niryo_ned):
Pick
niryo_ned.pick_from_pose(*pick_pose)
Place
niryo_ned.place_from_pose(*place_pose)

Third solution: all in one

We use THE predifined function:

def pick_n_place_version_4(niryo_ned):
Pick & Place
niryo_ned.pick_and_place(pick_pose, place_pose)

Examples: Conveyor Belt
This document shows how to use Ned's Conveyor Belt.

If you want see more about Ned's Conveyor Belt functions, you can look at API - Conveyor.

| O Note

Imports & initialization are not mentionned, but you should not forget it!

Simple Conveyor Belt control

This short example shows how to connect a Conveyor Belt, activate the connection and launch its motor:

niryo_robot = NiryoRosWrapper()

Activating connexion with conveyor and storing ID
conveyor_id = niryo_robot.set_conveyor()

Running conveyor at 50% of its maximum speed, in Forward direction
niryo_robot.control_conveyor(conveyor_id, True, 100, ConveyorDirection.FORWARD)

Stopping robot motor
niryo_robot.control_conveyor(conveyor_id, True, 0, ConveyorDirection.FORWARD)

Deactivating connexion with conveyor
niryo_robot.unset_conveyor (conveyor_id)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

Advanced Conveyor Belt control

This example shows how to do a certain amount of pick & place by using the Conveyor Belt with the infrared sensor:

def run_conveyor(robot, conveyor):
robot.control_conveyor(conveyor, bool _control_on=True,
speed=50, direction=ConveyorDirection.FORWARD)

-- Setting variables
sensor_pin_id = PinID.GPIO_1A

catch_nb = 5

The pick pose

pick_pose = [0.25, ©., ©.15, 0., 1.57, 0.0]

The Place pose

place_pose = [0.0, -0.25, 0.1, 0., 1.57, -1.57]

-- MAIN PROGRAM
niryo_robot = NiryoRosWrapper()

Activating connexion with conveyor
conveyor_id = niryo_robot.set_conveyor()

for i in range(catch_nb):
run_conveyor(niryo_robot, conveyor_id)
while niryo_robot.digital_read(sensor_pin_id) == PinState.LOW:
niryo_robot.wait(0.1)

Stopping robot motor

niryo_robot.control_conveyor(conveyor_id, True, 0, ConveyorDirection.FORWARD)
Making a pick & place

niryo_robot.pick_and_place(pick_pose, place_pose)

Deactivating connexion with conveyor
niryo_robot.unset_conveyor (conveyor_id)

Examples: Vision

This document shows how to use Ned's Vision Set.

If you want see more about Ned's Vision functions, you can look at API - Vision
Beforehand

To realize the following examples, you need to have create a workspace.

As the examples always start the same way, there is the code you need to add at the beginning of all of them:

#1/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

Initializing ROS node
rospy.init_node('niryo_ned_example_python_ros_wrapper')

niryo_robot = NiryoRosWrapper ()

- Constants
workspace_name = "workspace_1" # Robot's Workspace Name

The observation pose

observation_pose = (0.18, 0., 0.35, 0., 1.57, -0.2)
The Place pose

place_pose = (0., -0.25, 0.1, 0., 1.57, -1.57)

- Main Program

Calibrate robot if robot needs calibration
niryo_robot.calibrate_auto()

Changing tool

niryo_robot.update_tool()

Simple Vision pick

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

This short example shows how to do your first vision pick:

niryo_robot.move_pose(*observation_pose)

Trying to pick target using camera

ret = niryo_robot.vision_pick(workspace_name,
height_offset=0.0,
shape=0bjectShape.ANY,
color=0ObjectColor.ANY)

obj_found, shape_ret, color_ret = ret

if obj_found:

niryo_robot.place_from_pose(*place_pose)

niryo_robot.set_learning_mode(True)

Examples: Dynamic frames
This document shows how to use dynamic frames.

If you want to see more about dynamic frames functions, you can look at APl - Dynamic frames

| @ Danger

If you are using the real robot, make sure the environment around it is clear.

Simple dynamic frame control

This example shows how to create a frame and do a small pick and place in this frame:

#1/usr/bin/env python

Imports
from niryo_robot_python_ros_wrapper import *
import rospy

gripper_speed = 400

Initializing ROS node
rospy.init_node('niryo_example_python_ros_wrapper')

Connecting to the ROS Wrapper & calibrating if needed
niryo_robot = NiryoRosWrapper ()
niryo_robot.calibrate_auto()

Create frame

point_o = [0.15, 0.15, 0]
point_x = [0.25, 0.2, 0]
point_y = [0.2, 0.25, 0]

niryo_robot.save_dynamic_frame_from_points("dynamic_frame", "description", [point_o, point_x, point_y])

Get list of frames
print(niryo_robot.get_saved_dynamic_frame_list())

Check creation of the frame

info = niryo_robot.get_saved_dynamic_frame("dynamic_frame")
print(info)

Pick

#niryo_robot.open_gripper(gripper_speed)

Move to the frame

niryo_robot.move_pose(0, 6, ©, 0, 1.57, 0, "dynamic_frame")
#niryo_robot.close_gripper(gripper_speed)

Move in frame

niryo_robot.move_linear_relative([6, 0, 0.1, 0, 0, 0], "dynamic_frame")
niryo_robot.move_relative([0.1, 0, 0, 0, 0, 0], "dynamic_frame")
niryo_robot.move_linear_relative([®, 0, -0.1, 0, 0, 0], "dynamic_frame")
Place

#niryo_robot.open_gripper(gripper_speed)
niryo_robot.move_linear_relative([®, ©, 0.1, ©, @, 0], "dynamic_frame")

Home
niryo_robot.move_joints(®, 0.5, -1.25, 0, 0, 0)

Delete frame
niryo_robot.delete_dynamic_frame("dynamic_frame")

Python ROS Wrapper documentation
This file presents the different Functions, Classes & Enums available with the API.

e API functions
® Enums

API functions

This class allows you to control the robot via internal API. By controlling, we mean:
® Moving the robot.

® Using Vision.

e Controlling Conveyors Belt.

® Playing with hardware.

List of functions subsections:

® Main purpose functions
® Joints & Pose

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

® Saved poses
® Pick & place

e Trajectories

® Dynamic frames
® Tools

® Hardware

e Conveyor Belt
® Vision

e Sound

e |edRing

e (Custom Button

Main purpose functions

class NiryoRosWrapper
calibrate_auto()

Calls service to calibrate motors then waits for its end. If failed, raises NiryoRosWrapperException
Returns: status, message

Return type: (int, str)

calibrate_manual()

Calls service to calibrate motors then waits for its end. If failed, raises NiryoRosWrapperException
Returns: status, message

Return type: (int, str)

get_learning_mode()

Uses /niryo_robot/learning_mode/state topic subscriber to get learning mode status
Returns: True if activate else False

Return type: bool

set_learning_mode(set _bool)
Calsl service to set_learning_mode according to set_bool. If failed, raises NiryoRosWrapperException
Parameters: set_bool (boo/)- True to activate, False to deactivate
Returns: status, message

Return type: (int, str)

set_arm_max_velocity(percentage)

Sets relative max velocity (in %)
Parameters: percentage (int) - Percentage of max velocity

Returns: status, message

Return type: (int, str)

Joints & Pose

class NiryoRosWrapper
get_joints()

Uses /joint_states topic to get joints status

Returns: list of joints value
Return type: list[float]
get_pose()

Uses /niryo_robot/robot_state topic to get pose status
Returns: RobotState object (position.x/y/z && rpy.roll/pitch/yaw && orientation.x/y/z/w)

Return type: RobotState

get_pose_as_list()

Uses /niryo_robot/robot_state topic to get pose status

Returns: list corresponding to [x, Y, z, roll, pitch, yaw]

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

Ned ROS Documentation (v4.1.1)

Return type: list[float]

move_joints(1, 2, j3, j4, j5, j6)

Executes Move joints action

Parameters: e j1(float) -
j2 (float) -
j3 (float) -
j4 (float) -
j5 (float) -
j6 (float) -

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

move_to_sleep_pose()

Moves to Sleep pose which allows the user to activate the learning mode without the risk of the robot hitting something because of gravity

Returns: status, message

Return type: (int, str)

move_pose(x, y, z, roll, pitch, yaw, frame=")

Moves robot end effector pose to a (x, Y, z, roll, pitch, yaw) pose, in a particular frame if defined

Parameters: ® x(float) -

® vy (float) -

e z(float) -

® roll (float) -

e pitch (float) -
yaw (float) -
frame (str) -

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

shift_pose(axis, value)

Executes Shift pose action

Parameters: ® axis (ShiftPose) - Value of RobotAxis enum corresponding to where the shift happens
e value (float) - shift value

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

shift_linear_pose(axis, value)
Executes Shift pose action with a linear trajectory

Parameters: ® axis (ShiftPose) - Value of RobotAxis enum corresponding to where the shift happens
® value (float) - shift value

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

move_linear_pose(x, y, z, roll, pitch, yaw, frame=")

Moves robot end effector pose to a (%, Y, z, roll, pitch, yaw) pose, with a linear trajectory, in a particular frame if defined

Parameters: ® x(float) -
® y(float) -
® z(float) -
e roll (float) -
e pitch (float) -
® yaw (float) -
frame (str) -

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Ned ROS Documentation (v4.1.1)

set_jog_use_state(state)
Turns jog controller On or Off
Parameters: state (bool)- True toturnon,else False
Returns: status, message

Return type: (int, str)

jog_joints_shift(shift values)
Makes a Jog on joints position
Parameters: shift_values (/ist[float]) - list corresponding to the shift to be applied to each joint
Returns: status, message

Return type: (int, str)

jog_pose_shift(shift values)

Makes a Jog on end-effector position
Parameters: shift_values (/ist[float]) - list corresponding to the shift to be applied to the position
Returns: status, message

Return type: (int, str)

forward_kinematics(j7, 2, j3, j4, j5, j6)

Computes forward kinematics

Parameters: ® j1(float) -
j2 (float) -
j3 (float) -
j4 (float) -
j5 (float) -
j6 (float) -

Returns: list corresponding to [x, y, z, roll, pitch, yaw]

Return type: list [float 1

inverse_kinematics(x, y, z, roll, pitch, yaw)

Computes inverse kinematics

Parameters: ® X (float) -
® vy (float) -
® z(float) -
e roll (float) -
® pitch (float) -
® yaw (float) -

Returns: list of joints value
Return type: list [float 1
Saved poses

class NiryoRosWrapper
move_pose_saved(pose_name)

Moves robot end effector pose to a pose saved
Parameters: pose_name (str) -
Returns: status, message

Return type: (int, str)

get_pose_saved(pose_name)

Gets saved pose from robot intern storage Will raise error if position does not exist
Parameters: pose_name (str) - Pose Name
Returns: X, Y, z, roll, pitch, yaw

Return type: tuple[float]

save_pose(name, X, y, z, roll, pitch, yaw)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

Ned ROS Documentation (v4.1.1)

Saves pose in robot's memory

Parameters: ® npame (str) -
® X (float) -
® vy (float) -
® z(float) -
e roll (float) -
® pitch (float) -
® yaw (float) -

Returns: status, message

5/3/|

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

delete_pose(name)

Sends delete command to the pose manager service
Parameters: name (str) -
Returns: status, message

Return type: (int, str)

get_saved_pose_list(with_desc=False)

Asks the pose manager service which positions are available

Parameters: with_desc (bool) - If True it returns the poses descriptions
Returns: list of positions name

Return type: list[str]

Pick & place

class NiryoRosWrapper
pick_from_pose(x, y, z, roll, pitch, yaw)

Executes a picking from a position. If an error happens during the movement, error will be raised A picking is described as : - going over the object - going
down until height = z - grasping with tool - going back over the object

Parameters: ® x(float) -
® vy (float) -
® z(float) -
® roll (float) -
e pitch (float) -
® yaw (float) -

Returns: status, message

Return type: (int (https://docs.python.org

/functions.html#int), str (https://docs.python.o

3/library/stdtypes.html#str))

place_from_pose(x, y, z, roll, pitch, yaw)

Executes a placing from a position. If an error happens during the movement, error will be raised A placing is described as : - going over the place - going
down until height = z - releasing the object with tool - going back over the place

Parameters: ® x(float) -
® vy (float) -
® z(float) -
e roll (float) -
® pitch (float) -
® yaw (float) -

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org

3/library/stdtypes.html#str))

pick_and_place(pick_pose, place_pose, dist smoothing=0.0)

Executes a pick and place. If an error happens during the movement, error will be raised -> Args param is for development purposes

Parameters: ® pick_pose (list[float]) -
® place_pose (/ist[float]) -
* dist_smoothing (float) - Distance from waypoints before smoothing trajectory

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Ned ROS Documentation (v4.1.1)

Trajectories

class NiryoRosWrapper
get_trajectory_saved(trajectory_name)
Gets saved trajectory from robot intern storage Will raise error if position does not exist
Parameters: trajectory_name (str) -
Raises: NiryoRosWrapperException - If trajectory file doesn't exist
Returns: list of [x, y, z, gx, qy, qz, qw]

Return type: list[list[float]]

get_saved_trajectory_list()
Asks the pose trajectory service which trajectories are available
Returns: list of trajectory name

Return type: list[str]

execute_trajectory_from_poses(list poses_raw, dist smoothing=0.0)

Executes trajectory from a list of pose

Parameters: e list_poses_raw (/ist[list[float]]) - list of [x, y, z, gx, qy, gz, qw] or list of [x, y, z, roll, pitch, yaw]
e dist_smoothing (float) - Distance from waypoints before smoothing trajectory

Returns: status, message

Return type: (int ,str)

execute_trajectory_from_poses_and_joints(list pose_joints, list type=None, dist smoothing=0.0)

Executes trajectory from list of poses and joints

Parameters: ® list_pose_joints (/ist/list[float]]) - List of [x,y,z,qx,qy,qz,qw] or list of [x,y,zroll,pitch,yaw] or a list of [j1,j2,j3,j4,j5,j6]
e list_type (/ist[string]) - List of string ‘pose’ or ‘joint’, or ['pose] (if poses only) or [joint] (if joints only). If None, it is assumed there are only poses in the list.
e dist_smoothing (float) - Distance from waypoints before smoothing trajectory

Returns: status, message

Return type: (int , str)

save_trajectory(trajectory_points, trajectory_name, trajectory_description)

Saves trajectory object and sends it to the trajectory manager service
Parameters: e trajectory_name (str) - name which will have the trajectory
® trajectory_points (list[trajectory_msgsjointTrajectorypoint]) - list of trajectory_msgs/JointTrajectoryPoint
Returns: status, message

Return type: (int , str)

delete_trajectory(trajectory_name)
Sends delete command to the trajectory manager service
Parameters: trajectory_name (str) - name
Returns: status, message

Return type: (int, str)

Dynamic frames

class NiryoRosWrapper
save_dynamic_frame_from_poses(frame_name, description, list_ robot poses, belong to_workspace=False)
Create a dynamic frame with 3 poses (origin, x, y)

Parameters: * frame_name (str) - name of the frame
® description (str) - description of the frame
e |ist_robot_poses (/ist[list[float]]) - 3 poses needed to create the frame
® belong_to_workspace (boolean) - indicate if the frame belong to a workspace

Returns: status, message

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

Ned ROS Documentation (v4.1.1)

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

save_dynamic_frame_from_points(frame_name, description, list points, belong to_workspace=False)

Create a dynamic frame with 3 points (origin, x, y)

Parameters: e frame_name (str) - name of the frame
e description (str) - description of the frame
e list_points (/ist[list[float]]) - 3 points needed to create the frame
* belong_to_workspace (boolean) - indicate if the frame belong to a workspace

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

edit_dynamic_frame(frame_name, new_frame_name, new_description)

Modify a dynamic frame

Parameters: e frame_name (str) - name of the frame
® new_frame_name (str) - new name of the frame
® new_description (str) - new description of the frame

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

delete_dynamic_frame(frame_name, belong to_workspace=False)

Delete a dynamic frame
Parameters: e frame_name (str) - name of the frame to remove
® belong_to_workspace (boolean) - indicate if the frame belong to a workspace
Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

get_saved_dynamic_frame(frame_name)

Get name, description and pose of a dynamic frame
Parameters: frame_name (str) - name of the frame
Returns: name, description, position and orientation of a frame

Return type: list[str, str, list[float]]

get_saved_dynamic_frame_list()

Get list of saved dynamic frames

Returns: list of dynamic frames name, list of description of dynamic frames

Return type: list[str], list[str]

move_relative(offset, frame="world")

Move robot end of a offset in a frame
Parameters: * offset (/ist[float]) - list which contains offset of X, y, z, roll, pitch, yaw
e frame (str) - name of local frame
Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

move_linear_relative(offset, frame='world")
Move robot end of a offset by a linear movement in a frame
Parameters: e offset (/ist[float]) - list which contains offset of x, y, z, roll, pitch, yaw

e frame (str) - name of local frame

Returns: status, message

Return type: (int (https://docs.python.org/3/libra

unctions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

Tools

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Ned ROS Documentation (v4.1.1)

class NiryoRosWrapper
get_current_tool_id()

Uses /niryo_robot_tools_commander/current_id topic to get current tool id
Returns: Tool Id

Return type: ToollD

update_tool()

Calls service niryo_robot_tools_commander/update_tool to update tool
Returns: status, message

Return type: (int, str)

grasp_with_tool(pin_id=")
Grasps with the tool linked to tool_id This action corresponds to - Close gripper for Grippers - Pull Air for Vacuum pump - Activate for Electromagnet
Parameters: pin_id (PinID) - [Only required for electromagnet] Pin ID of the electromagnet
Returns: status, message

Return type: (int, str)

release_with_tool(pin_id=")

Releases with the tool associated to tool_id This action corresponds to - Open gripper for Grippers - Push Air for Vacuum pump - Deactivate for
Electromagnet

Parameters: pin_id (PinID) - [Only required for electromagnet] Pin ID of the electromagnet
Returns: status, message

Return type: (int, str)

open_gripper(speed=500, max_torque_percentage=100, hold_torque_percentage=20)

Opens gripper with a speed ‘speed’

Parameters: e speed (int) - Default -> 500
® max_torque_percentage (int) - Default -> 100
* hold_torque_percentage (int) - Default -> 20

Returns: status, message

Return type: (int , str)

close_gripper(speed=500, max_torque_percentage=100, hold_torque_percentage=50)

Closes gripper with a speed ‘speed’

Parameters: e speed (int) - Default -> 500
e max_torque_percentage (int) - Default -> 100
* hold_torque_percentage (int) - Default -> 20

Returns: status, message

Return type: (int , str)

pull_air_vacuum_pump()

Pulls air

Returns: status, message

Return type: (int, str)

push_air_vacuum_pump()

Pulls air
Returns: status, message

Return type: (int, str)

setup_electromagnet(pin_id)

Setups electromagnet on pin

Parameters: pin_id (PinID) - Pin ID

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Ned ROS Documentation (v4.1.1)

Returns: status, message

Return type: (int, str)

activate_electromagnet(pin_id)
Activates electromagnet associated to electromagnet_id on pin_id
Parameters: pin_id (PinID) - Pin ID
Returns: status, message

Return type: (int, str)

deactivate_electromagnet(pin_id)
Deactivates electromagnet associated to electromagnet_id on pin_id
Parameters: pin_id (Pin/D) - Pin ID
Returns: status, message

Return type: (int, str)

enable_tcp(enable=True)

Enables or disables the TCP function (Tool Center Point). If activation is requested, the last recorded TCP value will be applied. The default value depends on
the gripper equipped. If deactivation is requested, the TCP will be coincident with the tool_link

Parameters: enable (Bool) - True to enable, False otherwise.
Returns: status, message

Return type: (int, str)

set_tcp(x, y, z, roll, pitch, yaw)

Activates the TCP function (Tool Center Point) and defines the transformation between the tool_link frame and the TCP frame

Parameters: ® X (float) -
® vy (float) -
® z(float) -
e roll (float) -
® pitch (float) -
® yaw (float) -

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org

3/library/stdtypes.html#str))

reset_tcp()

Resets the TCP (Tool Center Point) transformation. The TCP will be reset according to the tool equipped
Returns: status, message

Return type: (int, str)

Hardware

class NiryoRosWrapper
set_pin_mode(pin_id, pin_mode)

Sets pin number pin_id to mode pin_mode

Parameters: e pin_id (PiniD) -
® pin_mode (PinMode) -

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.or¢

3/library/stdtypes.html#str))
digital_write(pin_id, digital state)
Sets pin_id state to pin_state
Parameters: e pin_id (Union[PinID, str]) - The name of the pin

e digital_state (Union[PinState, bool]) -

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.c

g/3/library/stdtypes.html#str))

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Ned ROS Documentation (v4.1.1)

digital_read(pin_id)
Reads pin number pin_id and returns its state
Parameters: pin_id (Union[PinID, str]) - The name of the pin
Returns: state

Return type: PinState

get_digital io_state()

Gets Digital 10 state : Names, modes, states
Returns: Infos contains in a 0OsState object (see niryo_robot_msgs)

Return type: |0sState

get_hardware_status()

Gets hardware status : Temperature, Hardware version, motors names & types ...
Returns: Infos contains in a HardwareStatus object (see niryo_robot_msgs)

Return type: HardwareStatus

Conveyor Belt

class NiryoRosWrapper
set_conveyor()
Scans for conveyor on can bus. If conveyor detected, returns the conveyor ID
Raises: NiryoRosWrapperException -
Returns: ID

Return type: ConveyorlD

unset_conveyor(conveyor_id)
Removes specific conveyor
Parameters: conveyor_id (Conveyorl/D) - Basically, Conveyor|D.ONE or Conveyor|D.TWO
Raises: NiryoRosWrapperException -
Returns: status, message

Return type: (int, str)

control_conveyor(conveyor._id, bool_control_on, speed, direction)

Controls conveyor associated to conveyor_id. Then stops it if bool_control_on is False, else refreshes it speed and direction

Parameters: ® conveyor_id (ConveyoriD) - ConveyorlD.ID_1 or Conveyorl|D.ID_2
® hool_control_on (bool) - True for activate, False for deactivate
® speed (int) - target speed
e direction (ConveyorDirection) - Target direction

Returns: status, message

Return type: (int , str)

Vision

class NiryoRosWrapper
get_compressed_image(with_seq=False)
Gets last stream image in a compressed format
Returns: string containing a JPEG compressed image

Return type: str

set_brightness(brightness_factor)

Modifies image brightness

Parameters: brightness_factor (float) - How much to adjust the brightness. 0.5 will give a darkened image, 1 will give the original image while 2 will enhance the
brightness by a factor of 2.

Returns: status, message

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Ned ROS Documentation (v4.1.1)

Return type: (int, str)

set_contrast(contrast _factor)

Modifies image contrast

Parameters: contrast_factor (float) - While a factor of 1 gives original image. Making the factor towards 0 makes the image greyer, while factor>1 increases the contrast
of the image.

Returns: status, message

Return type: (int, str)

set_saturation(saturation_factor)

Modifies image saturation

Parameters: saturation_factor (float) - How much to adjust the saturation. 0 will give a black and white image, 1 will give the original image while 2 will enhance the
saturation by a factor of 2.

Returns: status, message

Return type: (int, str)

get_target_pose_from_rel(workspace_name, height offset, x_rel, y_rel, yaw_rel)

Given a pose (x_rel, y_rel, yaw_rel) relative to a workspace, this function returns the robot pose in which the current tool will be able to pick an object at this
pose. The height_offset argument (in m) defines how high the tool will hover over the workspace. If height_offset = 0, the tool will nearly touch the
workspace.

Parameters: e workspace_name (str) - name of the workspace
® height_offset (float) - offset between the workspace and the target height
* x_rel (float) -
e y rel (float) -
* yaw_rel (float) -

Returns: target_pose

Return type: RobotState

get_target_pose_from_cam(workspace_name, height offset, shape, color)

First detects the specified object using the camera and then returns the robot pose in which the object can be picked with the current tool

Parameters: * workspace_name (str) - name of the workspace

height_offset (float) - offset between the workspace and the target height

shape (ObjectShape) - shape of the target

color (ObjectColor) - color of the target

Returns: object_found, object_pose, object_shape, object_color

Return type:

3/library/functions.html#bool), RobotState, str (https://docs.python.org/3/library/stdtypes.htmil#str), str

(https://docs.python.org/3/library/stdtypes.html#str))

vision_pick_w_obs_joints(workspace_name, height offset, shape, color, observation_joints)

Move Joints to observation_joints, then executes a vision pick

vision_pick_w_obs_pose(workspace_name, height offset, shape, color, observation_pose._list)

Move Pose to observation_pose, then executes a vision pick

vision_pick(workspace_name, height offset, shape, color)

Picks the specified object from the workspace. This function has multiple phases: 1. detects object using the camera 2. prepares the current tool for picking
3. approaches the object 4. moves down to the correct picking pose 5. actuates the current tool 6. lifts the object

Parameters: e workspace_name (str) - name of the workspace
® height_offset (float) - offset between the workspace and the target height
e shape (ObjectShape) - shape of the target
® color (ObjectColor) - color of the target

Returns: object_found, object_shape, object_color
Return type: (bool (https://docs.python.org/3/library/functions.html#bool), ObjectShape (index.html#niryo_robot_python_ros_wrapper.ros_wrapper_enums.ObjectShape),
ObjectColor (index.html#niryo_robot_python_ros_wrapper.ros_wrapper_enums.ObjectColor))

move_to_object(workspace, height offset, shape, color)

Same as get_target_pose_from_cam but directly moves to this position

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Ned ROS Documentation (v4.1.1)

Parameters: * workspace (str) - name of the workspace

height_offset (float) - offset between the workspace and the target height
shape (ObjectShape) - shape of the target

color (ObjectColor) - color of the target

Returns: object_found, object_shape, object_color

Return type: (bool (https://docs.python.org/3/library/functions.html#bool), ObjectShape (index.html#niryo_robot_python_ros_wrapper.ros_wrapper_enums.ObjectShape),

ObjectColor (index.html#niryo_robot_python_ros_wrapper.ros_wrapper_enums.ObjectColor))
detect_object(workspace_name, shape, color)

Parameters: e workspace_name (str) - name of the workspace
® shape (ObjectShape) - shape of the target
® color (ObjectColor) - color of the target

Returns: object_found, object_pose, object_shape, object_color
Return type: (bool (https://docs.python.org/3/library/functions.html#bool), RobotState, str (https://docs.python.org/3/library/stdtypes.html#str), str

(https://docs.python.org/3/library/stdtypes.html#str))

get_camera_intrinsics()

Gets calibration object: camera intrinsics, distortions coefficients
Returns: raw camera intrinsics, distortions coefficients

Return type: (list, list)

save_workspace_from_poses(name, list poses_raw)

Saves workspace by giving the poses of the robot to point its 4 corners with the calibration Tip. Corners should be in the good order

Parameters: ® name (str) - workspace name, max 30 char.
® list_poses_raw (/ist[list]) - list of 4 corners pose

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

save_workspace_from_points(name, list_points_raw)

Saves workspace by giving the poses of its 4 corners in the good order

Parameters: ® name (str) - workspace name, max 30 char.

e list_points_raw (/ist[list[float]]) - list of 4 corners [x, y, z]

Returns: status, message

Return type: (int (https://docs.python.org/3/library/functions.html#int), str (https://docs.python.org/3/library/stdtypes.html#str))

delete_workspace(name)

Calls workspace manager to delete a certain workspace
Parameters: name (str) - workspace name
Returns: status, message

Return type: (int, str)

get_workspace_poses(name)

Gets the 4 workspace poses of the workspace called ‘name’
Parameters: name (str) - workspace name
Returns: List of the 4 workspace poses

Return type: list[list]

get_workspace_ratio(name)
Gives the length over width ratio of a certain workspace
Parameters: name (str) - workspace name
Returns: ratio

Return type: float

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Ned ROS Documentation (v4.1.1)

get_workspace_list(with desc=False)

Asks the workspace manager service names of the available workspace
Returns: list of workspaces name
Return type: list[str]
Sound

For more function, please refer to: Sound API functions (index.html#sound-api-functions)

class NiryoRosWrapper
sound
Manages sound
Example:

from niryo_robot_python_ros_wrapper.ros_wrapper import *

robot = NiryoRosWrapper ()
robot.sound.play(sound.sounds[0])

Returns: SoundRosWrapper APl instance

Return type: SoundRosWrapper

Led Ring

For more function, please refer to: Led Ring API functions (index.html#led-ring-api-functions)

class NiryoRosWrapper
led_ring
Manages the LED ring
Example:

from niryo_robot_python_ros_wrapper.ros_wrapper import *

robot = NiryoRosWrapper ()
robot.led_ring.solid(color=[255, 255, 255])

Returns: LedRingRosWrapper API instance

Return type: LedRingRosWrapper

Custom Button

class NiryoRosWrapper
custom_button
Manages the custom button
Example:

from niryo_robot_python_ros_wrapper.ros_wrapper import *

robot = NiryoRosWrapper ()
print(robot.custom_button.state)

Returns: CustomButtonRosWrapper APl instance

Return type: CustomButtonRosWrapper

class CustomButtonRosWrapper (hardware_version="ned2")
state

Get the button state from the ButtonAction class

Returns: int value from the ButtonAction class

Return type: int

is_pressed()

Button press state

Return type: bool

wait_for_action(action, timeout=0)

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Ned ROS Documentation (v4.1.1)

Waits until a specific action occurs and returns true. Returns false if the timeout is reached.
Parameters: action (int) - int value from the ButtonAction class
Returns: True if the action has occurred, false otherwise

Return type: bool

wait_for_any_action(timeout=0)

Returns the detected action. Returns ButtonAction.NO_ACTION if the timeout is reached without action.

Returns: Returns the detected action, or ButtonAction.NO_ACTION if the timeout is reached without any action.

Return type: int

get_and_wait_press_duration(timeout=0)

Waits for the button to be pressed and returns the press time. Returns 0 if no press is detected after the timeout duration.

Return type: float

Enums

class ShiftPose

AXIS_X=0

AXIS_Y=1

AXIS_z=2

ROT_ROLL=3

ROT_PITCH=4

ROT_YAW=5

class ToolID
Tools IDs (need to match tools ids in niryo_robot_tools_commander package)

NONE= 0

GRIPPER_1=11

GRIPPER_2=12

GRIPPER_3=13

GRIPPER_4= 14

ELECTROMAGNET_1= 30

VACUUM_PUMP_1= 317

class PinMode

Pin Mode is either OUTPUT or INPUT

OUTPUT=0

INPUT=1

class PinState

Pin State is either LOW or HIGH

LOW= False

HIGH= True

class PinID
Pins ID

GPIO_1A='1A"

GPIO_1B='1B"

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Ned ROS Documentation (v4.1.1)

GPIO_1C="'1C’
GPIO_2A=2A'
GPIO_2B= 28’
GPIO_2C='2C'
SW_1="SW1"'
SW_2='SW2"'
DO1='DO7"
D02= D02
DO3= D03’
D04= D04’
DI1= DI’
DI2= D2’
DI3=DI3'
DI4='Di4'
DI5=DI5'
AI1="AlT'
AI2="A12'
A01="AOT’
A02="A02'

class ConveyorID

ConveyorlD to be able to have CAN (id 12 and 13) and TTL (id 9 and 10) conveyor in any possible combination

ID_1=12#0ne, Ned ID_2 =13 # One, Ned ID_3 =9 # Ned2 ID_4 = 10 # Ned2

NONE= 0
ID_1=-1
ID_2=-2

class ConveyorCan

ConveyorlD to control conveyors with CAN interface

NONE= 0
ID_1=172
ID_2=13

class ConveyorTTL

ConveyorlD to control conveyors with TTL interface

NONE= 0
ID_1=9

ID_2=10

class ConveyorbDirection

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

FORWARD= 17

BACKWARD= -1

class ObjectColor

RED= 'RED"

GREEN= 'GREEN'

BLUE= 'BLUE’

ANY=ANY’

class ObjectShape

CIRCLE='CIRCLE'

SQUARE= 'SQUARE'

ANY=ANY’

class ProgramLanguage

NONE= -7

ALL=0

PYTHON2= 1

PYTHON3= 2

BLOCKLY= 66

class AutorunMode

DISABLE= 0

ONE_SHOT= 1

LoOP=2

class ButtonAction

HANDLE_HELD_ACTION=0

LONG_PUSH_ACTION= 7

SINGLE_PUSH_ACTION=2

DOUBLE_PUSH_ACTION=3

NO_ACTION= 700

Modbus

$Modbus

In this document, we will focus on the Modbus/TCP server.
Ned is permanently running a Modbus TCP Server that enables Ned to communicate with a PLC, or another computer in the same network.

The Modbus/TCP server is running on port 5020 by default. It has been built on top of thepymodbus (https://pymodbus.readthedocs.io/en/latest/index.html)
library. This enables you to make Ned communicates with a PLC, or another computer on the same network.

Modbus Python library installation

To use the Modbus Python library, your workspace must have a Python interpreter with Python 3 (3.6 or greater) or Python 2 (2.7 or greater).

[

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://pymodbus.readthedocs.io/en/latest/index.html

Ned ROS Documentation (v4.1.1)

| © Note |
Download Python on the official Python website and find more information about the installation onthis website
This installation requires the use of pip , the package manager included in Python.

Start with the installation of numpy:

pip install numpy

To use the Modbus API, you also need to install Modbus python library pymodbus

pip install pymodbus

@ Attention

® Pip can require administrator authorizations to install packages. In this case, add

sudo

before your command lines on Linux.

e |f pip is not automatically installed with Python, please visit the following website: pip installation

$Modbus

In this document, we will focus on the Modbus/TCP server.

Use the Modbus TCP server

Ned is permanently running a Modbus TCP Server that enables Ned to communicate with a PLC, or another computer in the same network.

The Modbus/TCP server is running on port 5020 by default. It has been built on top of thepymodbus
library. This enables you to make Ned communicates with a PLC, or another computer on the same network.

Introduction

All 4 Modbus datastores are implemented: Coils, Discrete inputs, Holding registers, Input registers. Each datastore has a different set of functionalities. Note that
each datastore contains a completely different set of data.

Discrete Input and Input register are READ-ONLY tables. Those have been used to keep the robot state.

Coil and Holding Register are READ/WRITE tables. Those have been used to give user commands to the robot. Hence, those 2 tables do not contain the robot state,
but the last given command.

Address tables start at 0.

Coils

Each address contains a 1bit value.

READ/WRITE (the stored values correspond to the last given command, not the current robot state)
Accepted Modbus functions:

e 0x01: READ_COILS
® 0x05: WRITE_SINGLE_COIL

This datastore can be used to set Digital /0 mode and state. Digital /0O numbers used for Modbus:

Digitsl 10 addresses offset toble

Address offset Niryo One / Ned digital 10 Ned2 digital 10

0 1A DI1
1 1B DI2
2 1C DI3
3 2A DI4
4 2B DI5
5 2C DO1

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://www.python.org/
https://realpython.com/installing-python/
https://pypi.org/project/pip/
https://pymodbus.readthedocs.io/en/latest/index.html
https://pypi.org/project/pip/
https://pymodbus.readthedocs.io/en/latest/index.html

Ned ROS Documentation (v4.1.1)

Address offset Niryo One / Ned digital 10 Ned2 digital 10

6 SW1 D02
7 SW2 D03
8 D04
Address Description
0-8 Digital I/0 mode (Input = 1, Output = 0)
100-108 Digital I/0 state (High = 1, Low = 0)
200-299 Can be used to store your own variables

Discrete inputs

Each address contains a 1bit value.
READ-ONLY

Accepted Modbus functions:

® 0x02: READ_DISCRETE_INPUTS

This datastore can be used to read Digital /O mode and state. See the Coils section above for digital I/O number mapping.

Address Description
0-8 Digital I/0 mode (Input = 1, Output = 0)
100-108 Digital I/0 state (High =1, Low = 0)

Holding registers

Each address contains a 16bit value.

READ/WRITE (the stored values correspond to the last given command, not the current robot state)
Accepted Modbus functions:

® 0x03: READ_HOLDING_REGISTERS
® 0x06: WRITE_SINGLE_REGISTER

Address Description
0-5 Joints (mrad)
10-12 Position x,y,z (mm)
13-15 Orientation roll, pitch, yaw (mrad)
100 Sends Joint Move command with stored joints
101 Sends Pose Move command with stored position and orientation
102 Sends Linear Pose Move command with stored position and orientation
110 Stops current command execution
150 Is executing command flag
151 Last command result*
152 Last command data result (if not vision related)
153-158 Vision - Target pose result
159 Vision - Shape of the object found (-1: ANY, 1: CIRCLE, 2: SQUARE, 3: TRIANGLE, 0: NONE)
160 Vision - Color of the object found (-1: ANY, 1: BLUE, 2: RED, 3: GREEN, 0: NONE)
200-299 Can be used to store your own variables
300 Learning Mode (On = 1, Off = 0)
301 Joystick Enabled (On = 1, Off = 0)
310 Requests new calibration
311 Starts auto calibration
312 Starts manual calibration
401 Gripper open speed (100-1000)
402 Gripper close speed (100-1000)
500 Updates the tool id according to the gripper plugged (gripper 1: 11, gripper 2: 12, gripper 3: 13, vaccum pump: 31)
501 Stores the tool id

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

Address Description
510 Opens gripper previously updated
511 Closes gripper previously updated
512 Pulls air vacuum pump with id 31
513 Pushes air vacuum pump with id 31
520 Updates the conveyor id and enable it
521 Detaches or disables the conveyor previously enabled and updated
522 Starts the conveyor previously enabled and updated
523 Sets the conveyor direction (backward = number_to_raw_data(-1), forward = 1)
524 Sets the conveyor speed (0-100)(%)
525 Stores the conveyor id
526 Stops conveyor previously enabled and updated
600 TCP - Enables or disables the TCP function (Tool Center Point).
601 Activates the TCP function (Tool Center Point) and defines the transformation between the tool_link frame and the TCP frame.
610 Vision - Gets target pose from relative pose, with stored relative pose and height_offset
611 Vision - Gets target pose from camera, with stored workspace name, height offset, shape and color
612 Vision - Vision pick, with stored workspace name, height offset, shape and color
613 Vision - Moves to object, with stored workspace name, height offset, shape and color
614 Vision - Detects object, with stored workspace name, shape and color
620 Vision - Stores workspace's height offset
621 Vision - Stores relative pose x_rel
622 Vision - Stores relative pose y_rel
623 Vision - Stores relative pose yaw_rel
624 Vision - Stores requested shape (-1: ANY, 1: CIRCLE, 2: SQUARE, 3: TRIANGLE)
625 Vision - Stores requested color (-1: ANY, 1: BLUE, 2: RED, 3: GREEN)
626 - max 641 Vision - Stores workspace’s name, as a string encoded in 16 bits hex (see examples on how to store a workspace name from a client)
650 Set Analog |0 - Arg: [Analog IO number, voltage 0V- 5000mV]

“*' The “Last command result” gives you more information about the last executed command:

no result yet

success

command was rejected (invalid params, ...)
: command was aborted

: command was canceled

: command had an unexpected error

: command timeout

:internal error

L]
N UA WN = O

Input registers

Each address contains a 16bit value.
READ-ONLY.

Accepted Modbus functions:

® 0x04: READ_INPUT_REGISTERS

Address Description
0-5 Joints (mrad)
10-12 Position x,y,z (mm)
13-15 Orientation roll, pitch, yaw (mrad)
200 Selected tool ID (0 for no tool)
300 Learning Mode activated
400 Motors connection up (Ok = 1, Not ok = 0)
401 Calibration needed flag
402 Calibration in progress flag
403 Raspberry Pi temperature

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

Address Description
404 Raspberry Pi available disk size
405 Raspberry Pi ROS log size
406 Ned RPIimage version n.1
407 Ned RPI image version n.2
408 Ned RPI image version n.3
409 Hardware version (1 or 2)
530 Conveyor 1 connection state (Connected = 1, Not connected = 0)
531 Conveyor 1 control status (On = 0, Off = 1)
532 Conveyor 1 Speed (0-100 (%))
533 Conveyor 1 direction (Backward = -1, Forward = 1)
540 Conveyor 2 connection state (Connected = 1, Not connected = 0)
541 Conveyor 2 control status (On = 0, Off = 1)
542 Conveyor 2 Speed (0-100 (%))
543 Conveyor 2 direction (Backward = -1, Forward = 1)
600 - 604 Analog IO mode
610-614 Analog |0 state in mV

Anaslog /O addresses offset ioble

Address offset Niryo One / Ned analog |10 Ned2 analog 10

0 / All
1 / Al2
2 / AO1
3 / AO2
Dependencies - Modbus TCP Server
e pymodbus library
e Niryo_robot_msgs
® std_msgs
Modbus Examples
Examples of Modbus python lib can be found here Python Modbus examples

. In the examples folder, you can find several example scripts that control
Ned. These scripts are commented to help you understand every step.

Client Modbus Test

Calls several functions on the 10 of Ned.

Client Move Command

This script shows the calibration and Ned’s moves.

Client Modbus Conveyor Example

This script shows how to activate the Conveyor Belt through the Modbus Python AP, set a direction, a speed, and start and stop the device.
Client Modbus Vision Example

This script shows how to use the vision pick method from a Modbus Client, through the Modbus Python API. Ned picks a red object seen in its workspace and
releases it on its left. Note that we use the string_to_register method to convert a string into an object storable in registers.

#1/usr/bin/env python

from pymodbus.client.sync import ModbusTcpClient

from pymodbus.payload import BinaryPayloadBuilder, BinaryPayloadDecoder
import time

from enum import Enum, unique

Enums for shape and color. Those enums are the one used by the modbus server to receive requests

@unique
class ColorEnum(Enum):
ANY = -1
BLUE = 1
RED = 2
GREEN = 3
NONE = O
@unique
class ShapeEnum(Enum):
ANY = -1
CIRCLE = 1

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

https://pymodbus.readthedocs.io/en/latest/index.html
http://docs.ros.org/melodic/api/std_msgs/html/index-msg.html
https://github.com/NiryoRobotics/ned_ros/tree/master/niryo_robot_modbus/examples/

Ned ROS Documentation (v4.1.1)

SQUARE = 2
TRIANGLE = 3
NONE = 0

Functions to convert variables for/from registers

Positive number : 0 - 32767
Negative number : 32768 - 65535
def number_to_raw_data(val):
if val < 0:
val = (1 << 15) - val
return val

def raw_data_to_number(val):
if (val >> 15) == 1:
val = - (val & OX7FFF)
return val

def string_to_register(string):
code a string to 16 bits hex value to store in register
builder = BinaryPayloadBuilder ()
builder.add_string(string)
payload = builder.to_registers()
return payload

Boemeeeeeees Modbus server related function

def back_to_observation():
To change
joint_real = [0.057, 0.604, -0.576, -0.078, -1.384,0.253]
joint_simu = [0, -0.092, 0, 0, -1.744, 0]

joint_to_send = list(map(lambda j: int(number_to_raw_data(j * 1000)), joint_simu))
client.write_registers(0, joint_to_send)
client.write_register (100, 1)

while client.read_holding_registers(150, count=1).registers[0] == 1:
time.sleep(0.01)

def register_workspace_name(ws_name):
workspace_request_register = string_to_register(ws_name)
client.write_registers(626, workspace_request_register)

def register_height_offset(height_offset):
client.write_registers(620, int(number_to_raw_data(height_offset * 1000)))

def auto_calibration():
print "Calibrate Robot if needed ..."
client.write_register(311, 1)
Wait for end of calibration
while client.read_input_registers(402, 1).registers[0] == 1
time.sleep(0.05)

def get_current_tool_id():
return client.read_input_registers(200, count=1).registers[0]

de

wl

open_tool():

tool_id = get_current_tool_id()

if tool_id == 31:
client.write_register (513, 1)

else:
client.write_register (510, 1)

while client.read_holding_registers(150, count=1).registers[0] == 1:
time.sleep(0.05)

Function to call Modbus Server vision pick function

def vision_pick(workspace_str, height_offset, shape_int, color_int):
register_workspace_name(workspace_str)
register_height_offset(height_offset)

client.write_registers(624, number_to_raw_data(shape_int))
client.write_registers(625, number_to_raw_data(color_int))

launch vision pick function
client.write_registers(612, 1)

Wait for end of function
while client.read_holding_registers(150, count=1).registers[0] == 1:
time.sleep(0.01)

- Check result : SHAPE AND COLOR
result_shape_int = raw_data_to_number(client.read_holding_registers(159).registers[0])

result_color_int = raw_data_to_number(client.read_holding_registers(160).registers[0])

return result_shape_int, result_color_int

2 cocooooooos Main programm
if __pame__ == '__main__':
print "--- START"

client = ModbusTcpClient('localhost', port=5020)

3 oooocoos Variable definition
To change
workspace_name = 'gazebo_1'

height_offset = 0.0

connect to modbus server
client.connect()
print "Connected to modbus server"

launch auto calibration then go to obs. pose
auto_calibration()
back_to_observation()

update tool
client.write_registers(500, 1)

print 'VISION PICK - pick a red pawn, lift it and release it'

shape = ShapeEnum.ANY.value

color = ColorEnum.RED.value

shape_picked, color_picked = vision_pick(workspace_name, height_offset, shape, color)

---- Go to release pose
joints = [0.866, -0.24, -0.511, 0.249, -0.568, -0.016]
joints_to_send = list(map(lambda j: int(number_to_raw_data(j * 1000)), joints))

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

CLLENL.WILLE_TeYLSLErS(U, JULNLS_LU_SEenu)
client.write_register (100, 1)

Wait for end of Move command
while client.read_holding_registers(150, count=1).registers[0] == 1:
time.sleep(0.01)

open_tool()
back_to_observation()

Activate learning mode and close connexion
client.write_register (300, 1)

client.close()

print "Close connection to modbus server"
print "--- END"

More ways to control Ned

There is even more ways to control Ned.

If you are a beginner, look at Blockly section to understand the programming fundamentals.

If you want to go further, maybe experience your own image processing, multi-robot, Al... You can go toPyNiryo for more information.
Blockly

Check out Niryo Studio.

PyNiryo

As explained in the page Use Ned's TCP server , a TCP Server is running on Ned, which allows it to receive commands from any
external device.

PyNiryo is a Python package available on Pip which allows to command the Niryo Robots with easy Python Binding.
January 2022 release - Niryo One & Ned compatibility - Hardware Stack refinement
Requirements

Ubuntu packages

e sqlite3

o ffmpeg

® build-essential

® catkin

® python-catkin-pkg

e python-pymodbus

e python-rosdistro

® python-rospkg

e python-rosdep-modules

e python-rosinstall python-rosinstall-generator
® python-wstool

® ros-melodic-moveit

e ros-melodic-control

® ros-melodic-controllers

e ros-melodic-tf2-web-republisher

e ros-melodic-rosbridge-server

e ros-melodic-joint-state-publisher-gui

Python libraries

See src/requirements_ned2.txt file
Packages

New packages

® niryo_robot_database

® niryo_robot_led_ring

® niryo_robot_metrics

® niryo_robot_reports

® niryo_robot_sound

® niryo_robot_status

® niryo_robot_hardware_stack/can_debug_tools

® niryo_robot_hardware_stack/common

® niryo_robot_hardware_stack/end_effector_interface
® niryo_robot_hardware_stack/serial

Renamed packages

® niryo_ned_moveit_config_standalone becomes niryo_moveit_config_standalone

e niryo_ned_moveit_config_ w_gripper1 becomes niryo_moveit_config_w_gripper1

® niryo_robot_hardware_stack/stepper_driver becomes niryo_robot_hardware_stack/can_driver
® niryo_robot_hardware_stack/dynamixel_driver becomes niryo_robot_hardware_stack/ttl_driver

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

® niryo_robot_hardware_stack/niryo_robot_debug becomes niryo_robot_hardware_stack/ttl_debug_tools
Removed packages

® niryo_robot_serial_number
® niryo_robot_unit_tests
® niryo_robot_hardware_stack/fake_interface

Cleaning and Refactoring

® roslint compliant

e catkin lint compliant for most part

® add xsd validation for launch files and package.xml files
e updated packages format to version 3

e updated c++ version to c++14

e clang and clazy compliance improvement

e rosdoc_lite set up in all packages

® catkin_tools compliant

e install space working

e sphinx_doc restructuration

e add hardware_version discrimination between ned, one and ned2
® add ned2 configuration files in all packages

® niryo_robot_arm_commmander refactoring

® niryo_robot_python_ros_wrapper refactoring

Features (for Ned and One only)

add VERSION file at root

e add CHANGELOG.rst in every package (using catkin_generate_changelog tool)
update PID values for Dynamixels

Replace fake interface by mock drivers for steppers and Dynamixels

e Add compatibility for TTL conveyor belts (upcoming)

e Add Ned2 features (upcoming)

® niryo_robot_bringup refactoring

e improve control loops for ttl_driver and joints interface

Know issues (for Ned and One only)

Can't scan 2 conveyors at the same time. Please scan the conveyors one by one.
Limitations

e (Calibration deactivated on Simulated Ned and One

® Not officially supporting Ned2 hardware version

® Hotspot mode is always on by default on reboot for the Niryo One
Niryo Studio

New features

® Network settings (DHCP / Static IP)

® Hardware detection One / Ned / Ned2

e Display TCP Speed

® Blockly - Dynamic blocks (Saved pose, workspace)

Bugs fix

® Blockly - Conversion RAD / DEG in block

September release - New features batch

Features

Tool commander package

® TCP service settings
TCP.msg

SetTCP.srv
Arm commander package

e New movements available in ArmMoveCommand.msg

linear pose
shift linear pose
trajectory

Python ROS Wrapper package

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

Ned ROS Documentation (v4.1.1)

e New movement functions available

move linear pose
linear pose

jog pose shift

jog joints shift
shift linear pose

execute trajectory from pose
e New TCP functions available

set_tcp
enable_tcp

reset_tcp
e New camera settings functions available

set_brightness

set_contrast

set_saturation
Improvements

® Refactoring Tool Commander and Robot Commander packages.

Remove Robot Commander package

Reorder Robot Commander package between Tool Commander and Arm Commander packages.
e Self collision detection

Add self-collision detection via Movelt.
o Collision detection

Collision detection improvement on each joints.

Learning mode activation in case of a collision.

Suggest a modification Download as PDF

2022, Niryo All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Niryo SAS

	Ned ROS documentation
	Preamble¶
	Ned Control via ROS¶
	ROS Direct control¶
	Python ROS Wrapper¶
	More ways¶
	ROS Stack overview¶
	Use your Niryo Robot¶
	Use Niryo robot through simulation¶
	Quick start¶
	Getting Started¶
	Ubuntu 18 Installation¶
	Windows Subsystem for Linux installation (experimental)¶
	Overview¶
	High Level Packages¶
	Low Level Packages¶
	Third Parties Packages¶
	Control with Python ROS Wrapper¶
	Modbus¶
	More ways to control Ned¶
	January 2022 release - Niryo One & Ned compatibility - Hardware Stack refinement¶
	September release - New features batch¶

